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Numerical Simulation of the Two-
Dimensional Viscous Compressible
Flow in Blade Cascades Using a
Solution-Adaptive Unstructured
Mesh |

An explicit finite element procedure has been coupled with an automatic generation
procedure for mesh-adaptive steady-state simulations of two-dimensional viscous
compressible flows in cascades. Turbulence is modeled by a two-layer algebraic eddy
viscosity model. Results show good behavior in comparison with measurements and
results of a conventional H-mesh viscous flow solver. Computed loss approaches
measured loss as the mesh is refined. Currently, the unstructured solver suffers in
efficiency terms because the automatic mesh generator tends to produce inefficient
equilateral triangles in the regions of shock waves. and boundary layers where
stretched elements would be more appropriate. This means that, at least for the
Navier-Stokes equations, the unstructured approach is not yet competitive with
conventional structured techmniques. Nevertheless, this will change once the key
advantages of geometric flexibility and user-independent solutions force rapid de-

G. L. D. Sidén

Volvo Flygmotor AB,
Trollhattan, Sweden

W. N. Dawes

Whittle Laboratory,
Cambridge,” United Kingdom

P. J. Albraten

Volvo Flygmotor AB,
Trollhidttan, Sweden

velopment.

Introduction

- Conventional viscous flow. solvers are becoming a routine
industrial design tool. These solvers are invariably based on
conventional meshes (H-mesh, O-mesh, C-mesh, etc.) with a
topologically rectangular structure and usually remain fixed
throughout a simulation. Unfortunately, the production of a

suitable mesh is not routine. Many, often conflicting issues

need to be addressed: the leading edge must be carefully gridded
to avoid excessive false entropy creation; highly skewed mesh
must be avoided; some attempt must be made to give shocks
adequate mesh support; and so on.
By contrast, the solution-adaptive unstructured mesh de-
scribed in this paper holds out the possibility of user-inde-
pendent simulations. Provided the user can define the cascade
- geometry and boundary conditions, the evolution of the so-
lution generates its own appropriate mesh: In the present work
the mesh adaption is controlled by two criteria; The magnitude
of the static pressure gradient determines the element size in
the vicinity of shocks and stagnation points; the local entropy

determines the element size in the boundary layer region and-

in the wake. Pioneering work in this area has been presented
(for Euler solvers) by Morgan and Peraire (1987), Lohner et
al. (1987), and Holmes et al. (1988).

Contributed by the International Gas Turbine Institute and presented at the
34th International Gas Turbine and Aeroengine Congress and Exhibition,
Toronto, Ontario, Canada, June 4-8, 1989. Maniiscript received at ASME Head»
quarters February 1, 1989. Paper'No. 89-GT-211.
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The solution procedure is based on the two-step explicit
Taylor-Galerkin finite element method (Morgan and Peraire,
1987), which has previously proven to be robust and accurate
for high-speed compressible-flows. Turbulence is modeled by
a two-layer algebraic turbulence model (Baldwin and Lomax,
1978) that does not compromise the advantages of the un-
structured: mesh. This type of turbulence model has the ad-
vantage of being computationally inexpensive compared with
other candidates such as one or two-equation models. Alge-
braic models are widely used for turbomachinery simulations
and produce good predictions of turbulent boundary layers;

‘however, their performance in large separated regions is ques-

tionable.

The flow solver is coupled with an automatic mesh gener-
ation procedure (Peraire et al., 1987) that generates a complete
new mesh at each refinement. This is a robust way of imple-
menting mesh-adaptive simulations, leaving the user well in
control of the number of node points in the refined mesh and
allowing the grid to be made coarser as well as more refined
where the solution so indicates. The fact that virtually the same
mesh has to be regenerated, in.areas of small change, from
one refinement to the next is not a large constraint since, even
though these areas may be large, they usually contain only a
minor portion of the mesh points. -

Results are presented both for compressor and turbine cas-
cades and comparisons with experiments show improving
agreement in loss as the mesh is refined. Comparisons are also

JULY 1990, Vol. 112/ 311
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made with a conventional H-mesh viscous flow solver (Dawes,
1985).

Equations of Motion

The governing equations for viscous compressible flows may
be written in conservation form

oU  aF;_oFy o
at ax,' h 6x,~
where
o ou; 0
U= oy Fi= ) puju;+pdy; Fi= 9ji aT
pe u;(pe+p) ujoj;+ ka_xi
(2)

Herep, p, e, T, k, and §; denote density, pressure, total energy,
temperature, thermal conductivity, and the Kronecker delta,
respectively, and u; is the component of the fluid velocity in
the direction of x;. The viscous stress tensor oy is given by

du; du; 2 du
= Ly ) = ———ka..
% “(ax,- ax,> 3 ax, 3)

where u is the viscosity. The equation set is completed by the
addition of the state equations

1
p=(y—1p <e'§ujuj)

1 1
= €=Ul

Turbulence is accounted for by the inclusion of a two-layer
algebraic mixing length eddy viscosity model (Baldwin and
Lomax, 1978), in which x4 and k consists of a laminar part u;
and k;(k; = u,;/Pr), and a turbulent part, ur and k{(kr=ps/
Pr;). The model has two layers in which the turbulent viscosity
is given by

(4a)

(4D)

- UTinner Y= Ycrossover (5)

[y
Y > YCI’OSSOVCI

HTouter

where Y is the normal distance from the nearest wall and
Yerossover 1S the smallest value of Y at which values from inner
and outer formulas are equal. To aid the implementation of
the model on the unstructured mesh, at the time of mesh
generation, a table is created for each blade surface node of
a sequence of nodes nearly normal to the blade surface. This
is illustrated in Fig. 1. For each node the normal distance to
the blade surface is also computed. Note that as described in
the later section on mesh generation a triangular structured
O-mesh is deployed close to the blade with about ten nodes
normal to the blade (i.e., covering about half the boundary
layer). This node sequence is taken to be the ‘“‘profile’’ over
which the turbulence model is deployed. Although slightly
approximate, the strictly ‘‘mathematical’’ error is far less than
the uncertainty implicit in turbulence modeling itself. The eddy
viscosity in the inner and outer regions is as follows. In the
inner region

BTyane = PN 1€ (6a)
where 1Q| is the magnitude of the vorticity and
—yt/at + NewrY
A=kY{l-e ] Yr=—trr (6b)
In the outer region
ETouter = CorpFwaxkefkLes (7)

312/ Vol. 112, JULY 1990

Structured O-mesh around the blade with a thickness of 10 nodes
and 18 elements. This mesh is deployed in order to generate stretched
elements in the boundary layer. The solution procedure within the struc-
tured mesh is equivalent to the procedure outside.

Fig. 1

where

Fyake=MIN(YyaxFuaxs Cwx Yuaxibire/Fuax)  (8)

The quantities Fyjax and Yyax are determined from the func-
tion

F(Y)=YIQI{1-e ¥4 ©

Fyax is the maximum value of F(Y) in a given profile and
Yumax is the value of Y at which the maximum occurs. Thus
the model length scale is determined from the vorticity distri-
bution. The Klebanoff intermittency factor is given by
C 6] !
Fuen= [1+s.s{———KLEB"} ] (10)
YMAX
The value of uper is the difference between maximum and
minimum velocity in the given profile. The various constants
are taken as

A+ = 26 CCL = 0.02688
CKLEB = 03 k)\ = 041
Cwx = 0.25 Pr; = 0.9

No special treatment is made of any separated zones. Tran-
sition location currently is specified as input data. The wake
is effectively modeled by the outer formulation (7).

Solution Strategy

The time domain is divided into finite levels, here denoted
by superscript.k. For the solution to proceed from time level
k to time level k+ 1, the following two-step procedure is used:

Step 1

k
m*lffzuk—%t% (11a)
1
Step 11
F‘_‘k+1/2 aka
AU= -—Ata'——kAt——; (11b)
axi 6xi

where At denotes the time step and AU= U**+! — U*, In steady-
state calculations the time step varies spatially, such that the

Transactions of the ASME
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Courant number stability criterion is not exceeded locally

At
(lu'|+C)Ax,~$1 (12)
Above, lu;l, ¢, and Ax; are the magnitude of the fluid velocity,
the wave speed and the shortest element side.

All quantities at the intermediate time level &k -+ 1/2 are ap-
proximated using piecewise constant basis functions, y,, and
all quantities at time levels k and k+1 are mterpolated on

linear ba51s functions, ¢;:

Uk+1/2 Uk+l/211/ (13(1)
U= Uk, (13b)

where e and j denote summations over elements and nodes,
respectively. The weak formulation takes the form

Step 1
Ve gty = U (e
(lpel//E) <‘pﬁbE> j< ‘/’E) ( a)
2 0x;
Step 11
a )
AU = AtF,C:“/Z(t//,_, ¢/> At(pk 90/
l
- AtSF,?" V20 nds + AtSF;J"@,n,ds (14b)

where n; is the ith component of the unit normal vector directed
outwards, and {) denotes the inner product:

{asb) = Sga-b dx dy (15)

The line integrals in (14a) and (14b) are defined counterclock-
wise along external boundaries and clockwise along internal
boundaries. In the first step the solution is formed directly at
the element level, and hence vectorizes directly. The second
step, however, involves assembling each element contribution
to the nodal fluxes. This operation is somewhat more expensive
and in the current version of the code has not been vectorized.
To do this elements must be ‘‘colored’’ and sorted into sets
to eliminate the data dependencies that prevent automatic vec-
torization. This will be accomplished in the next version of the
code. The second step may be expressed schematically as

[MIAU=R (16)

where [M] is the consistent mass matrix and R is the assembled
flux terms. For steady-state calculations [M] is approximated
by the lumped mass matrix, [M,], which is easily inverted due
to its diagonal structure.

0 i#j

(M), =
" Doy
k

a7
i=J

By using the lumped mass matrix the method may be thought
of as a Lax-Wendroff predictor-corrector method, which uses
shape functions to approximate the primary variables and fluxes
within an element.

In order to ensure stable computations in problems involving
strong shocks, an artificial viscosity has been applied (Morgan
and Peraire, 1987). The solution computed from equation (155)
is replaced by the smoothed nodal values, U<*!:

ML))p
M. ])pl

(IM] -

M Uk+1
(M= M;])

(18)

U§+1_Uk+1:CU[ML]—l ([}\4]_

where C, is a constant. This is the unstructured mesh imple-

Journal of Turbomachinery

mentation of, in finite difference terms, second difference
smoothing with a second difference pressure sensing switch.
This switch, |((M]—[M)p/| (IM]—[M])pl |, is of order
(mesh spacing)? in smooth regions of the flow but of order 1
in the region of shocks. Hence in smooth flow, the term
Uk*!— U s of order (mesh spacing)’ and does not alter the
basic second-order accuracy of the scheme but near shock
waves does facilitate shock capture. It should be noted that
across boundary layers and wakes the combination of a pres-
sure-driven switch and physically small transverse pressure gra-
dients minimizes false viscosity error. The range of C, is
typically 1-2 in transonic flows and 0.1-0.2 in subsonic flows.

The boundary conditions on the upstream and exit bound-
aries are applied in a weak sense through the boundary integrals
in equation (15b). On the upstream boundary total pressure,
total enthalpy and the velocity component tangential to the
boundary are specified, and on the downstream boundary the
static pressure is fixed. These conditions are applied in a non-
reflecting manner by making use of characteristic theory (Giles,
1986). On the blade boundary the condition of no normal flux
of mass and heat is weakly applied to the continuity and energy
equations, whereas the momentum equation is discarded in
favor of the strong boundary condition: pu =0, pv=20.

Mesh Generation and Refinement Strategy

The flow solver is coupled with an advancing front grid
generation procedure (Peraire et al., 1987), which is capable
of generating an unstructured mesh provided that the geometry
and the distribution of local element size § are given. The
boundaries of the domain are prescribed by a number of
boundary segments, each defined by a set of boundary points,
and the variation of § is specified at each node point of a given
background mesh. The strategy of solution-adaptive refine-
ment for steady-state problems is implemented by the following
iterative procedure:

1 generation of a uniform initial mesh (the production of
a uniform mesh is trivial; only one background element
is needed)

2 computation of steady-state solution

3 if desired accuracy is achieved, stop simulation

4 refinement indicator is computed, at each note point, from
the solution

5 generation of new mesh by using the old mesh as a back-
ground mesh; local element size is controlled by the in-
dicator

6 initial condition on new mesh is given by the interpolated
solution from the old mesh

7 go to (2)

Currently, the indicator used for refinement is a scalar and
hence not directional, although it is recognized that by using
an indicator that senses element shape as well as element size,
stretched elements could be generated. This would be an eco-
nomical advantage, for example, in boundary layers, where
the flow is approximately one dimensional. Here, this issue
has been addressed by including a thin layer of structured mesh,
consisting of highly stretched elements, in the region near the
wall. This is illustrated in Fig. 1. For the present computations
(Figs. 7-9, 11) ten nodes were deployed normal to the blade
in this O-mesh. Nevertheless, the mesh generator still tends to
produce far too many inefficient near-equilateral elements in
shocks, boundary layers, and wakes where the flow is essen-
tially one dimensional. It is hoped that further development
can alleviate this inefficient use of computer memory, but is
is not an easy task.

We have found it convenient first to resolve the boundary
layer and wake, which is done using the local entropy as the
indicator for refinement

JULY 1990, Vol. 1127313
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nodes
elements

Fig. 2(a) Initial finite element mesh for a generic fan blade configu-
ration; (b) Mach number contours of the steady-state solution on the
initial mesh: M, =0.5660; M,,,, = 1.3215; Interval = 0.04

;T S ‘ 14449 nodes
e BE,, 28052 elements
R
SRSk %?

A
4

Fig. 3(a) Mesh after two refinements of boundary layer and wake; (b)
Mach number contours of the steady-state solution on the mesh shown
in Fig. 3(a): My, = 0.0; M., = 1.3707; interval = 0.04

314/ Vol. 112, JULY 1990

13585
26272

nodes
elements

Fig.4(a) Mesh after an additional refinements of shocks and stagnation
point; (b) Mach number contours of the steady-state solution on the
mesh shown in Fig. 4(a): M, = 0.0; M, = 1.4628; interval = 0.04

S:—S.:

‘ 6j = __L_%(amax ~ Omin) + Omin 19)
max ~ Omin

Smaxs Smins and §; are the maximum, minimum, and nodal

values of entropy, 8, and 8, are the maximum and minimum

specified values of element size, and §; is the nodal indicator.

Next we refine shocks and stagnation points by also taking

into account the magnitude of the static pressure gradient

o api |~
ax,' Bx,-

The condition (19) or (20) that produces the smallest value of
element size is used locally. )

Figures 2-4 show a sequence of refinements for a generic
fan blade and the steady-state solution on each respective mesh.
Since the initial mesh is too coarse to resolve the boundary
layer, the no-slip condition has in this case been replaced by
the condition of no flux of mass and heat normal to the blade
boundary. This sequence is intended purely to illustrate the
concepts of solution adaptive refinement. As the refinement
proceeds the blade surface needs increasing definition. This is
provided by a sequence of splines to calculate new blade points,
thus guaranteeing that blade surface curvature is always prop-
erly represented.

(20)

6j = 6min

max

Basic Code Validation

The complete validation of a code is extremely expensive
and almost invariably carried out in-house (validation is the
key investment in CFD). Here we present predictions for a
Blasius boundary layer and a transonic aerofoil. Figure 5 com-
pares the predicted laminar flow past a flat plate with zero
pressure gradient with the exact Blasius result (Schlichting,
1979). The agreement between the velocity profile (at mid-
chord) and skin friction development is perfectly acceptable.

Transactions of the ASME
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o Computed values
Blasius solution

v x/chord

oo 02 04 06 [<¥:] 10

Fig. 5(a) Skin friction coefficient versus chord position for the laminar
flat plate case compared with the Blasius solution
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Fig. 5(b)

Velocity profile at 50 percent of chord for the fiat plate case
compared with the Blasius solution .

The predictions used a mesh of 35 by 33 nodes, a Mach number
of 0.2, a Reynolds number of 10%, and the same value of C,
as for routine blade work.

Figure 6(a) shows the mesh (consisting of 2300 nodes) used
to predict the flow past a symmetric aerofoil at zero incidence.
Only the upper part of the flow was modeled with appropriate
symmetry conditions upstream and downstream of the aero-
foil, The Mach number is 0.8 and the Reynolds number
1.8 x 105, hence transition is assumed at the leading edge. The
comparisons of both surface pressures and skin friction with
experimental measurement (Baker and Squire, 1982) and the
predictions of a conventional structured mesh solver (Dawes,
1985) are, again, perfectly acceptable (Figs. 65-d).

Sample Application

The capability of the described method is demonstrated by
comparing results with measurements and a conventional vis-
cous flow solver (Dawes, 1985), based on the traditional block
implicit scheme by Beam and Warming (1977). Two sets of
runs have been conducted for a high-speed turbine configu-
ration, for which experimental values of loss and blade surface
pressures are available (Kiock et al., 1985). The first simulation
considers the turbulent case, whereas the second simulation is
laminar. In both cases a Reynolds number of 6.7 x 10°, based
on the true chord and the flow variables on the exit boundary,
is used. Boundary conditions are applied corresponding to a
flow angle of 37.9 deg on the upstream boundary and a Mach
number of 0.985 on the exit boundary.

The sequence of meshes used is illustrated in Fig. 7 (as in
Fig. 1, a structured O-mesh is used near the blade with 10
nodes normal to the blade). The conventional solver uses an
entirely structured H-mesh consisting of 50 X 99 computational
cells.

Blade Surface Pressures and General Flow Field.  One ob-
jective of the simulations is to estimate the load on the blade

Journal of Turbomachinery

Fig. 6(a) Mesh consisting of 2300 nodes used for compulauon of tran-
sonic flow around an aerofoil at zero incidence
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Fig. 6(d) Velocity profile at 55 percent of chord

and the distribution of static pressure along the blade surface.
In Figs. 8(a) and 8(b) the surface pressures are plotted versus
the blade surface coordinate for the turbulent case and laminar
case, respectively. In the turbulent case (Fig. 8a) results of both
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Fig. 7(a)
{b) mesh after one refinement of boundary layer and wake; 8305 nodes;
15,866 elements; (¢) mesh after two refinements of boundary layer and
wake; 12,206 nodes; 26,625 elements; (d) mesh after an additional re-
finement of areas with large static pressure gradients; 15,099 nodes;

Basic coarse mesh consisting of 686 nodes and 1196 elements;

29,279 elements

solvers compare well with measured values; the adaptive solver
clearly provides better resolution in the shock and trailing edge
regions. The results of the laminar simulations (Fig. 8b) do
not differ much from the turbulent results (Fig. 8a), except
for the region downstream of the shock on the suction side,
indicating that the solution in this area is highly turbulent. The
unstructured solver has a tendency to produce small wiggles
in the blade surface pressures (see Fig. 8). This is not geometric
in origin (as the refined blade surface is always spline fit) but
rather is a failure of the numerical smoothing to damp small
wiggles propagating from the high-gradient leading edge re-
gion. This failure is partly due to using minimal smoothing
(i.e., smoothing is too low) but also due to the presence of
additional unstable modes on unstructured triangles that are
poorly damped by our smoother.

Figures 9(a-c) show contour plots of Mach number, static
pressures, and entropy for the turbulent solution on the final
mesh. These may be compared with the solution on the struc-
tured mesh (Figs. 10a-d). The two solutions compare in gen-
eral. But here also, we note discrepancies in the resolution of
shocks and in the trailing edge region. The adaptive solver
produces much better shock resolution than the conventional
solver. In particular the reflection of the trailing edge shock
on the suction surface is well predicted by the adaptive solver;
the conventional solver has smeared it into the expansion. The
shock-boundary layer interaction zone (Fig. 11) shows a well-
resolved separation zone (and also illustrates the extend of the
resolution of the structured O-mesh local to the blade). The
separation bubble itself appears larger than that present in the
experiments (Kiock et al., 1985) so this has implications for
the loss prediction.

Loss Prediction. Another reason for simulating viscous
compressible flows is to predict the loss in a cascade stage
under certain flow conditions. The loss w is defined as

316 / Vol. 112, JULY 1990

Po1— Po
W=
Dox—D2
where p, and p are the total and static pressures, respectively;
the overbar represents a pitchwise mass average; the subscript
2 denotes the exit value and the subscript 1 is the value at the
upstream boundary. In general, numerical schemes tend to
overestimate the loss due to numerical viscosity inherent in the
method, but are needed in order to stabilize the computations
in the vicinity of shocks. Figures 7(a-d) show the sequence of
meshes used for the turbulent run and Table 1 shows the
computed loss as a function of the number of mesh points.
As the mesh is refined the experimental loss is approached,
although not reached.

It is clear that for a given number of mesh points, the con-
ventional solver is more accurate, according to the losses in
Table 1. This is almost entirely due to the present mesh gen-
erator, which produces far too many equilateral triangles in
regions like shocks, wakes, and boundary layers, which are
really one dimensional and would be more efficiently resolved
on stretched elements. Overcoming this inherent difficulty with
the mesh generator is currently the major pacing item in the
code development. This should not be seen as a major restric-
tion for the future. As the mesh refinement increases, the
predicted loss falls to a level somewhat above that measured.
It is believed that this must be due, at least partly, to numerical
smoothing (which should be rather more sophisticated). For
the turbulent case the final unstructured and structured loss
levels are effectively the same, which is encouraging as they
use the same turbulence model and the same model constants.

@1

Conclusion

A solution-adaptive viscous flow solver algorithm is de-
scribed and applied to high-speed flows in cascades. We have
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Fig. 8(a) Blade surface pressures for turbuient simulation; values are
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Fig. 8(b) Blade surface pressures for laminar simulation; values are
scaled by the upstream stagnation pressure

Fig. 9(a) Mach contours for turbulent case on final mesh: Max
value = 1.28; contour interval = 0.025; (b) static pressure contours for
turbulent case on final mesh: Max value = 0.80; Min value = 0.28; inter-
val = 0.05; (¢) entropy contours for turbulent case on final mesh; the
entropies are scaled by the upstream values; Max value =1.38; Min
value = 0.96; interval = 0.02
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Fig. 10(a) Structured H-mesh for conventional flow solver: The mesh
consists of 4950 node 'points; (b) Mach contours of steady turbulent
solution on the structured mesh: The contour interval is 0.025; (c) static
pressure contours of steady turbulent solution on the structured mesh:
The contour interval is 0.05; (d). entropy contours of steady turbulent
solution on the structured mesh: The contour interval is 0.02

found three major advantages with this procedure compared
with conventional structured mesh flow solvers:

(9) The method provides greater generality since the unstruc-
tured mesh puts no constraint on the type of geometry that

may be encountered. It also allows for adaptive refinement:.

along arbitrary curves or at arbitrary points in the domain. In

this way numerical detail may be supplied where; and only”

where, needed. . ] .
(i) The simulations are to a large extent user independent

318 / Vol. 112, JULY 1990

Table 1 Computed loss versus number of mesh points

method loss ®
measurement 4.15 %
conventional solver, laminar case

- 4950 mesh points 5.12%
conventional solver, turbulent case f

- 4950 mesh points 7.60 %
adaptive solver, laminar case .

- 8305 mesh points 12.7 %

- 12099 mesh points 9.12 %

- 14186 mesh points 6.23 %
adaptive solver, turbulent case

- 8305 mesh points 12.8 %

- 12206 mesh points 103 %

- 15099 mesh points 148 %

Fig. 11 Vectors of fluid velocity in the turbulent boundary layer sep-
aration region, which is located at about 3/4 chord on the suction side

since no knowledge of the solution is required in order to
generate the mesh, The mesh is generated automatically from
the solution according to given criteria. The only input from
the user, except for the geometry and boundary conditions, is
minimum and maximum allowed element size.

(ifi)) Any degree of accuracy is achievable without sacrificing
good discretization practice. By decreasing the minimum al-
lowed element size it is possible to achieve higher local accuracy
without the risk of developing badly deformed or skewed ele-
ments.

Results show that the method presented has the ability to
resolve local phenomena such as shock/boundary layer inter-
action. )

However, the current code has several disadvantages com-
pared to a conventional, well-developed structured code:

(/) The mesh generator produces far too many inefficient
equilateral triangles in steep gradient regions like shocks, when
correctly aligned stretched elements would drastically reduce
the number of nodes required for a given resolution.

(i) More sophisticated smoothing needs to be developed for
the unstructured environment.
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(/i) Some implicitness must be introduced into the algorithm
to relieve restrictive small time steps in the boundary layer.

(iv) The current code is still a research code and so the ¢pu
times do not yet compare favorably with a mature structured
code. Nevertheless, the cost per point per time step is com-
parable and further work on the mesh generator will reduce
overall cpu times. i

All four issues are currently being addressed.
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Throughflow Theory for
Nonaxisymmetric Turbomachinery
Flow: Part |—Formulation

Throughflow theory has been limited in its applicability and in its accuracy by the
Jfact that it has not historically been cast in a form that can account for the non-
axisymmetries that naturally arise in turbomachinery flow due to the presence of
Sfinite numbers of rotor and stator airfoils. The attempt to circumvent this limitation

R. P. Dring

United Technologies Research Center,
E. Hartford, CT 06108

_G- C. Oates by the introduction of an aerodynamic blockage factor has been demonstrated in
University of Washington, earlier work to produce fundamental inconsistencies in the calculation, which lead
Seattle, WA to significant errors in the regions of the flow where the nonaxisymmetries are severe.

The formulation in Part I of the present work is a derivation of a system of through-
flow equations for nonaxisymmetric flow. A benchmark database is used in Part
11 to provide input to the calculation and to help identify the dominant terms. It is
demonstrated that the dominant effect of nonaxisymmetry is contained in two terms
that relate the total pressure of the averaged flow to the mass-averaged total pressure.
It also is demonstrated that the present formulation produces a result that is more

accurate than that obtained with the historical blockage-based formulation.

Introduction

Throughflow theory in turbomachinery design is a two-di-
mensional, axisymmetric calculation describing the spanwise
variation of the flow at various streamwise locations, both
within and between the rotor and stator airfoil rows, from the
inlet of the compressor or turbine to its discharge. The cal-
culation is at the heart of the design process since it determines
the incident flow conditions of Mach number and flow angle
and the downstream flow conditions of total pressure loss, exit
flow angle, and axial velocity-density ratio (AVDR) that the
rotor and stator airfoils must be designed to produce.

Although highly sophisticated fully three-dimensional
Navier-Stokes solution algorithms are beginning to appear,
which have the potential to attack turbomachinery flows in
full generality, the basis of most contemporary design systems
is a sequence of two-dimensional calculations, most notably,
the throughflow prediction and the airfoil potential flow pre-
diction. Because of their speed and efficiency, these two-di-
mensional calculations will continue to play an important role
in the aerodynamic design of multistage compressors. For this
reason, there is great incentive to improve the physical model
on which throughflow theory is based.

Throughflow theory, as it has historically been used, is based

on an axisymmetric treatment of circumferentially averaged:

flow. It has long been recognized, however, that there are
major nonaxisymmetries present in the flows exiting rotor and
stator airfoil rows and that these nonaxisymmetries have a

Contributed by the International Gas Turbine Institute and presented at the
34th International Gas Turbine and Aeroengine Congress and Exhibition,
Toronto, Ontario, Canada, June 4-8, 1989. Manuscript received at ASME Head-
quarters February 21, 1989. Paper No. 89-GT-304.
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powerful impact on the flow. As an example, Fig. 1 illustrates
the nature of the total pressure distributions downstream of
the second-stage rotor and stator of a two-stage compressor
operating at near-stall conditions. Strong nonaxisymmetries
are present in the flow due to the rotor tip leakage, profile
wake, and hub corner separation, and due to the stator profile
wake and hub corner separation.

The strong first-order effects of nonaxisymmetries such as
these are normally modeled by introducing a ‘‘blockage fac-
tor’’ into the throughflow analysis. This aerodynamic blockage
factor is usually thought of in much the same way as the
mechanical blockage caused by the tangential thickness of the
airfoils. Blockage in the present context is what has been re-
ferred to as ‘‘tangential’’ blockage and not ‘‘endwall’’ block-
age (AGARD, 1981). Tangential blockage is intended to
account for the department of the actual flow field from the
axisymmetric treatment in the theory.

Over the years, a number of investigators have looked at
the effect of nonaxisymmetries on throughflow theory (Ruden,
1944; Smith, 1966; Hirsch, 1975; Hirsch and Warzee, 1976,
1979; Sehra and Kerrebrock, 1979; Hirsch and Dring, 1987).
The major conclusion from this work is that nonaxisymmetries
do have the potential to impact the flow, especially near the

endwalls.
In an effort to quantify the impact of nonaxisymmetries on

a throughflow prediction, a number of detailed analytical/
experimental comparisons have been carried out making use
of an extensive benchmark data set for a two-stage compressor
and utilizing the throughflow calculation of Habashi (1980)
and Habashi and Youngson (1983). These assessments were
carried out with the compressor operating both at nominal

Transactions of the ASME
SME

copyright; see http://www.asme.org/terms/Terms_Use.cfm



ROTOR EXIT (ROTARY TOTAL PRESSURE)

RADIUS, in.

RADIUS — in.

\‘\\\ RN o5
AT AN

),,y\ PH A

\
\\
\\}\\\\\\; &
//——24

».\ W \
<

.u"

Fig.1 Second-stage rotor and stator exit total pressure contours, ACpr
= 0.025

design point conditions (Dring and Joslyn, 1985, 1986a, 1986b,
1986¢), and at near-stall conditions (Dring and Joslyn, 1986d,
1987). These assessments have indicated that throughflow
theory becomes inaccurate in regions where the aerodynamic

blockage is high and that the accuracy of the prediction is very
sensitive to the detailed spanwise distributions of blockage.

The objective of the present work is to derive and assess an
improved formulation of throughflow theory that accounts
for the nonaxisymmetry of the flow,

Derivation

To a great extent, the present work is an extension of the
throughflow formulation of Hirsch and Warzee (1979). It also
is an extension of the discussion of the implications of the
various circumferential averaging processes presented by Hirsch
and Dring (1987). One final note of caution with respect to
these previous works and the present work is that in this
derivation the notation for the various averaging processes has
been changed in an attempt to make the work more readable.

The essential concept in applying throughflow theory to
nonaxisymmetric flow is that the variables can be dealt with
on some suitable circumferentially averaged basis. The nature
of the most suitable averaging process depends on the partic-
ular equation or variable being averaged. The equations that
will be employed in this formulation include the continuity
equation, the equation of state, and the radial projection of
the momentum equation. In addition to these, the averaging
process also must be applied to the variables normally con-
sidered to be conserved along stream surfaces, i.e., absolute
angular momentum, entropy, and rothalpy. As a result of all
this, three different averages will be utilized. The need for each
average will become apparent as the derivation develops. These
three circumferential averages are as follows for any function
Jo):

Area Average

_ s fs
Sfi= S fdbs S do )
Density Average
Os Os
fi= So ofdo/ Se pdf (2a)
2 D
=pf/p* (20)
Mass Average
_ Os s
Jrn= S,, pC.fdo/ X,, pC,dt (3a)
P 2
= pCf/pC,"=Cf/C,* (3b)

In these definitions note that for incompressible flow or
compressible flow at low Mach numbers the density and area
averages are equal, or very nearly so.

Nomenclature

b = mechanical blockage

C = absolute flow speed o = absolute yaw angle, equation rot = rotary total

f = any general function (25) x = axial component
F, = airfoil pressure force B = relative yaw angle, equation 0 = total

F; = airfoil friction force (26) f = circumferential component
H = total enthalpy #; = mean camber line lean angle .

h = static enthalpy ¢ = stream function Superscripts

I = rothalpy p = density ~——a = pitchwise area average, equa-
N = number of airfoils in a row 7 = airfoil pitch tion (1)

P = static pressure # = angular coordinate —d = pitchwise density average,

R = gas constant . equation (2)

r = radial coordinate Subscripts ~—m = pitchwise mass average,

s = entropy abs = absolute equation (3)

T = static temperature s = airfoil suction surface " = defined in equations (14) and
t = airfoil tangential thickness p = airfoil pressure surface (284)

W = relative flow speed r = radial component * = fluctuation from the density
x = axial coordinate rel = relative average

Journal of Turbomachinery
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Continuity Equation. It has been demonstrated by Hirsch
and Warzee (1979) that the continuity equation can be inte-
grated circumferentially to produce the following averaged
form:

I
o B3 G+ o= (rbp” C*) =0 @

In this expression b is the tangential blockage factor due to
the airfoil tangential thickness

b=1-(t/7) )
Note that in the axial gaps between adjacent airfoil rows and
in the ducts up and downstréam of the compressor or turbine
(where there are no airfoils), the mechanical blockage is unity.

A stream function may be defined based on these area and
density-averaged variables.

— 1 dp
d_ 9¢
Gf= rbp® <6r>
— —1 /[oe
d_ o9¢
< rbo* <5x)

Equation of State. The equation of state also may be cir-
cumferentially averaged as follows:

P°=R(pT*) =p"RT* 7
From the continuity equation and the equation of state it
can be seen that each variable is emerging in its own preferred

circumferentially averaged form, either a density average or
an area average.

(6a)

(60)

Momentum Equation. It has been demonstrated by Hirsch
and Warzee (1979) that the radial projection of the momentum
equation can be integrated circumferentially to produce an
equation similar to the following:

— 1 d¢ d 1 de
Cd = haol —_ uitl
"[ar (rbf)” a:-) ™ <rb5” axﬂ 8a)
1 9P°
- =% (8b)
Y si i i
+5 3 Cl+ W+ C, — Q42 8c)
W d  —,
=5 (1 G (8d)
~F;, /5" (8e)
() L o T ®)
bro®) or o
+ _L i(br‘“W’W"’) (8)
bre) ax P T s &
1
-~ (W) (8h)

In this form, the terms (8/), (8¢), and (84) are identical to
Ny, N,, and N, in the Hirsch and Warzee (1979) formulation.
The primed velocity components C,’, Wy’, and C,’ are the
circumferential variations from the density-averaged compo-
nents. These have been called ‘‘perturbation terms’’ but they
are not necessarily small.

The term describing the area-averaged radial pressure gra-
dient may be treated in several ways. Hirsch and Warzee [1976,
equation (66)] expanded it in terms of the radial component
of the airfoil pressure force and the radial derivative of block-
age as follows:

322/ Vol. 112, JULY 1990

P 8 19b
=2 (PO=Fy+ 5

— 1
— (P~ - [P;+P 9
ar ar b or ( 2[ 5 p]> ( )
Jennions and Stow [1985, equations (71) and (72)] expanded
the same term slightly differently, i.e., in terms of the radial
derivative of the airfoil suction and pressure surface angular
locations as follows:
oP° 9 — N =, 00, — a9
= — (P 4+ — | (P,—P%) =2 + (P*-P,) =
ar ar( ) 27rb[(p )6r ( s) 6r]

(10)

This latter form is more convenient to evaluate from measured
data in terms of airfoil pressure distributions and airfoil ge-
ometry.

Returning to equation (8), it is necessary to eliminate the
averaged radial static pressure gradient equation (84) in favor
of radial gradients of rothalpy (I) and entropy (s). These two
variables offer the advantage that on some averaged basis they
are conserved, or vary in a prescribed manner, along stream
surfaces. The radial pressure gradient will be expanded with
the Gibbs’ equation

B _ (B, (2
ar — P \ar) TP \ar

The circumferential average of this equation is as follows

ape dsd an
=-p T— )+ |—
ar p < or > e < ar )
Expanding these terms and introducing the fluctuation of each
variable from its density average (as demonstrated by Hirsch

and Warzee, 1979) results in the following expression when
combined with equations (9) and (10) (Dring and Oates, 1988):

(11

(12)

—.| a 1 dp d 1 d¢
dl — )+ —(—== 13
C [ar <rb5" 8r> T ax <rb;;” ax>] (13a)
=d
_ 7 (13b)
ar
e Bfl =3 2 =3,
+ rm + ar[z(C,+W,,+CX~Q %) (13¢)
7 d 9 ~d
~(Wisr) 5 (r Co) (13d)
—(F7,/5°) (13¢)
9 —a Y7 A7 7 d
+ ——— (bIF W W, % 139
bro? ar
L2 e W) (13)
brp@ax 0 T x ¢
- % (We' Wp" ) (13h)
N = 00— 0,
— —poy 2 -p,) == 1
* Tnb [(P,, Poy 25+ (PU=Py) o 13y
— ap? asa\ ||_
dor _pry 22 r 22 a
‘+[(TS h') o (pT ar>]p (13)

Note that the two terms in equation (13¢) can be combined to
form a type of rothalpy

o1 —2 2 _ 2
I=h+ —Z-(C‘,’+ Wi+ Cdi— 0% (14
This expression for rothalpy, I, is the rothalpy of the density-

averaged flow. It is not the density-averaged rothalpy. It is
not conserved along stream surfaces (Hirsch and Dring, 1987).
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Conservation Conditions. At this stage in the analysis, the
continuity equation (4), the equation of state (7), and the radial
projection of the momentum equation (13) have all been de-
rived in terms of circumferentially averaged variables and the
fluctuations from these averages. These three equations, how-
ever, are still not sufficient to describe the flow fully. Several
conservation conditions must be incorporated into the system
of equations. These conservation conditions account for the
fact that three variables, the rothalpy, entropy, and absolute
angular momentum, are conserved along stream surfaces. These
conditions are one of the mechanisms [along with the elliptic
or hyperbolic nature of equation (13)] whereby information is
transmitted {(convected) in the streamwise direction. Care must
be taken, however, in the exact way in which these conditions
are incorporated into the averaged system of equations.

For a steady three-dimensional flow, if any quantify (f) is
conserved along streamlines this can be expressed as follows:

Ve (pWf)=0 (15)

The convenience of this form lies in the fact that it can be
circumferentially averaged in the same manner as Hirsch and
Warzee (1979) did for the continuity equation. As demon-
strated by Hirsch and Dring (1987) and by James (1987) this
leads to the following averaged conservation equation:

R I—
Z Ty 4 — =0 16
ar (rbpC/") + -~ (rbpC.f*) (16)

Rewriting this expression in terms of the mass average defined
in equations (3a@) and (3b) leads to the following:
0 —a~d C’ m 9 —a~df
— — + — (rbpC%f™) =0 17
6r(rbp Cxl:cxf ax (ropCLf™) 17

If it is assumed that C, and C, are proportional as they vary
in the circumferential direction, then this equation simplifies
into a very convenient form (Hirsch and Dring, 1987; James,
1987). This assumption is equivalent to assuming that stream
surfaces remain axisymmetric. Under this assumption, equa-
tion (17) becomes the following:

9 - — 8 =
Tt — (") +Te— (™ =0 (18)

Thus the mass average of a quantity (which is conserved along
streamlines in an inviscid three-dimensional flow) is conserved
along stream surfaces based on the density-averaged velocity
components if the stream surfaces of the three-dimensional
flow remain axisymmetric, i.e., if C, and C, are proportional
in their circumferential variation. ‘

This assumption of axisymmetric stream surfaces in the three-
dimensional (noncircumferentially averaged) flow is important
in this development since it provides the necessary conservation
conditions in a very convenient- form, equation (18). This,
however, is only an assumption and no doubt there are oc-
casions where it is not an appropriate assumption. However,
Adkins and Smith (1982) have provided an excellent and ex-
haustive treatment of the physics of spanwise mixing by stream
surface rotation due to deterministic secondary flows. The
assumption has been made in the present analysis that the flow
was inviscid, i.e., that the effects of diffusion were negligible.

However, the analysis of Gallimore and Cumpsty (1986a,

1986b) provides an excellent model for the inclusion of this
mechanism, In summary then, physical models are available
that can account for the effects of diffusion and stream surface
rotation. :

Applying the conservation condition in equation (18) for
flows with axisymmetric stream surfaces to the conserved vari-
ables required for equation (13), i.e., rothalpy, entropy, and
absolute angular momentum, provides the following:
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1" =const (19)
§™ =const along ¢ =const (20)
rC§ =const @D

The fact should be kept in mind that within airfoil rows
these parameters may not be constant due to the airfoil forces.
The mass-averaged entropy will change in response to the pre-
scribed airfoil total pressure loss distribution and the mass-
averaged absolute angular momentum will change in response
to the prescribed airfoil turning distribution.

It is the three conservation conditions that permit the cal-
culation of the three radial gradient terms on the right-hand
side of the momentum equation, i.e., equations (134), (13¢)
and (13d). With the introduction of three additional correction
terms the momentum equation can be written in terms of radial
gradients of the mass-averaged quantities as follows:

—. 10 1 3¢ 0 1 d¢
Cd el - . —_—
* [ar (rb;?" ar) ™ (rbﬁ“ Z')x)] (224)
arm  — 95"
= — T4
or or (22b)
— archy
— (W4
(wigrr) ar (22¢)
—(F;,/0") 22d)
+ =2 e T 22
brotor P T (22¢)
+—ﬂa-(br_”W’W"’) (22
brg® dx LM /)
1 —
- (Wo' Wy’ ) (22g)
=, 99, =a a0,
+ b [(P,,—P ) o + (P~ P) ar] 22h)
— apﬂ os a .
dar _pry 28 r 2= a
’+ [(T h') e <pT 6r> }/p 22))
_a_ F_Tm __di =d_<om
+[6r [I-1"-T Ep (s9—5 )J (22))
T d A\ =4 _Fm
—(W§/r) a rcgi-cm (22k)

A convenient relationship exists between equation (22k) and
the first term in equation (22/). This relationship comes about
because of the connection between the rothalpy and the relative
and absolute enthalpies. This is demonstrated as follows:

) 1
I=H - '2" U2=Habs_ UGy (23)
From this, the following relations may be derived:
(f‘ 7m) = (Hrel fﬁmrel) ' v (24(1)
= (Hups—H3) - U(C{-CF) (24b)

Thus the impact of nonaxisymmetry on the rothalpy (and on
the relative total enthalpy). is related to-its impact on the ab-
solute total enthalpy and on the absolute swirl velocity.

The final closure issue to be addressed is related to whether
the static pressure should be density or area-averaged. If the
static pressure is calculated by applying the isentropic relations
to the total and static enthalpies of the density-averaged flow,
equation (14), then a density-averaged static pressure would
result. The averaged equation of state, however, gives rise to
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Fig. 2 First-stage stator exit flow angles, ¢ = 0.45

an area-averaged static pressure, equation (7). It seems prob-
able, however, that in the vast majority of applications the
difference between these two averaged static pressures would
be inconsequential in the axial regions between adjacent airfoil
rows because of the relatively weak circumferential variations
of static pressure in these regions (e.g., Dring and Joslyn,
19864, Fig. 1). There may, however, be significant effects within
airfoil rows where the static pressure and density may vary
strongly.

Flow Angle Definitions. The input flow angles are neither
area nor density nor mass average. In fact, averaged angles
have no significance at all. The input angles must be based on
the density-averaged velocity components since these angles
are used to relate the swirl component of velocity to the axial
component of velocity (which appear as density averages)

a=tan~{(C§/CY) 25)
B=tan " (W§/CY) (26)

Figure 2 contains spanwise distributions of absolute and
relative flow angles as calculated by several averaging proce-
dures, It is based on traverse data acquired downstream of the
first-stage stator in a two-stage compressor {(Dring and Joslyn,
1987) operating at near-stall conditions. The open symbols
represent area and mass-averaged angles. The relative and ab-
solute flow angles based on the mass and area averages of the
various velocity components are plotted as the solid symbols.

One is led to question why the relative flow angle based on
area-averaged velocity components is larger than the other
relative flow angle profiles in the region from the hub out to
30 percent span. This behavior is related to the differences that
exist between the mass and area-averaged velocity components
in this region due to the wide and deep stator wakes. For
example, at the 10 percent span location, the area-averaged
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axial velocity and absolute swirl velocity components are both
approximately 85 percent of the mass-averaged values and
hence the absolute flow angles based on these mass and area-
averaged velocity components are very close (= 29.3 deg).
When the wheel speed is subtracted, however, the area and
mass-averaged relative velocity components produce relative
flow angles that are very different (— 60.6 deg and — 54.8 deg).
Thus significantly different relative flow angles can result even
when the absolute flow angles are nearly equal.

While it is clear that flow angles based on density-averaged
velocity components are the only correct input for a through-
flow analysis it is still not clear which of these angle definitions
should be used in computing the pressure distributions on the
airfoils (Smith and Jennions, 1988). The second-stage rotor
was chosen as a basis on which to examine this question. Since
the range of relative angles based on the various definitions
was large (=~ 6 deg) in the flow aft of the first stator near the
hub (Fig. 2), and since the hub corner separation on the second
rotor was small (relative to those on the stators), this airfoil
provides a good basis on which to examine this flow angle
question.

The results in Fig. 3 include both the measured surface static
pressure distribution and the computed potential flow distri-
butions for two inlet flow angles at the 3.2 percent span location
on the second-stage rotor. The two inlet flow angles used were
the mass-averaged angle (55.4 deg) and the angle based on the
area-averaged velocity components (61.8 deg), a difference of
6.4 deg. The agreement between the measured data and the
computed results is clearly superior for the angle based on
averaged velocity components, especially on the pressure sur-
face. The agreement on the suction surface also is better for
this case but it is far from perfect due to the hub corner
separation on this rotor. Similar results were demonstrated
both at the 12.5 and 25 percent span locations where the dif-
ferences between the two angle definitions were 5.3 and 2.4
deg, respectively.

The conclusion here is that not only are the flow angles
based on averaged velocity components necessary for an ac-
curate throughflow analysis, but they also give a more accurate
result in the airfoil potential flow analysis.

Incompressible Flow. For incompressible flow a somewhat
simplified form of the momentum equation can be derived by
combining equations (8) and (10), by noting that area and
density averages are equivalent, and by utilizing rotary total
pressure (Hawthorne, 1974) as the conserved quantity instead
of rothalpy and entropy. The following form results for in-
compressible flow:
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In comparing the fully compressible form, equation (22), with
the incompressible form, equation (27), it can be seen that the
effects of rothalpy and entropy have been absorbed by the
rotary total pressure. In addition, the fluctuation contribution
in equation (22/) has been completely eliminated.

Another feature of the incompressible form of the momen-
tum equation (27) that is noteworthy is that the contribution
of the fluctuation terms, equations (27¢)-(27/), can be thought
of as a single additive term. The contributions of the individual
terms are of no consequence. Only the sum is important and
nothing in the sum is calculated as part of the throughflow
solution. The same cannot be said for the last term, equation
(27/), since this term also involves the relative swirl velocity
(W$) which would be calculated as part of the solution.

Finally, equations (224) and (27h) can be written in a some-
what simpler albeit approximate form if it is assumed that the
airfoils are sufficiently thin such that the radial derivatives of
the suction and pressure surface angular locations (6, and 6,)
are both equal to the radial derivative of the airfoil mean
camber line angular location (6;). In this case, equation (274)
can be written as follows

N 99,
27h ar
For flows through airfoil rows where only the airfoil surface

pressures are known, equation (29) can be estimated far more
accurately than equations (224) or (27h).

(Pp_Ps) (29)

Conclusions

A formulation of a throughflow theory for nonaxisymmetric
flow in turbomachinery has been derived. The formulation
satisfies both the mass flow requirements through the use of
density-averaged velocity components, as well as the ther-
modynamic requirements through the use of mass-averaged

Journal of Turbomachinery

conservation conditions. The theory does not require aero-
dynamic blockage as input. Specific conclusions are as follows:

1 Nonaxisymmetric effects should be modeled as the dif-
ference between (@) the rothalpy, entropy, and angular mo-
mentum of the density (or area)-averaged flow and (b) the
mass-averaged rothalpy, entropy, and angular momentum.

2 Modeling nonaxisymmetric effects with a multiplier on
the continuity equation (blockage) is inconsistent.

3 Total pressure losses must be mass averaged.

4 Flow angles must be defined as the arc tangent of the
density-averaged tangential velocity component divided by the
density-averaged axial velocity component, equations (25) and
(26), and not as averaged angles.

5 Not only are the flow angles based on averaged velocity
components necessary for an accurate throughflow analysis,
but they also give a more accurate result in the airfoil potential
flow analysis.

6 The choice of the definition of the flow angles can sig-
nificantly alter airfoil incidence.
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DISCUSSION
C. Hirsch!

The authors have done excellent work in attempting to clarify
the question of which ate the most approprxate and/or con-
sistent, set of averaged quantities to be used in throughﬂow
and quasi-3D, axisymmetric formulations. '

This clarification would, however, be incomplete without
stressing some aspects of the blockage approach and its relation
to the choice between density (or area) and mass-averaged flow
quantities. The main contribution that this discussion aims at
expressing is that the throughflow equations can be written
and treated in a totally consistent way, with either type of
averaged variables. The difference between these two options
lies in the definition of the quantities introduced in the axi-
symmetric throughflow equations in order to express the con-
tributions arising from the nonaxisymmetric flow components
and the associated set of approximations. In the author’s ap-
proach, two quantities, DPR and DPA, are needed as empirical
input along the spanwise direction at each station; while in the
simplified tangential blockage approach a single quantity,
namely, the tangential blockage distribution, is required. The
latter corresponds to a different way of expressing the non-
ax1symmetr1c contrlbutlons and since it summarizes these ‘ef-
fects in a single. quantlty, ‘instead of two, the vahdxty conditions
of this approach might be more severe.

In order to specify this point more clearly, we summarize
some essential aspects of the blockage formulation, as derived
by Hirsch and Dring (1987), using the notations of the present
paper.

The blockage formulation results from the different ways
the average of velocity products can be expressed as products
of averaged velocities. For instance the following momenturmn
flux, appearing in the radial component of the throughflow
equatlons can be written as:

pCe =pTicitpclel ()

where the second term in the right-hand side, expressed as @n
averaged product of nonaxisymmetric velocity components,
measures the nonaxisymmetric contributions: An alternative
‘way can be considered, introducing momentum averages, as
follows:

; ‘Vn]e Umversnten Brussel, Department of Flu]d Mechanics, Pleinlan 2 1050
Brussels, Belgium,
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The differences between the momentum-averaged velocities
¢{" and ¢/ and the corresponding density averages contain
the same information as the fluctuation term in the first equa-
tion. The second form of the foregoing equation contains the
mass-averaged radial velocity component and can be written
as

pe,C; =pciTy 3)
Hence, the ratio between the density and mass-averaged radial

velocities is a measure of the fluctuation term of equation (1)
and can be represented by the quantity

K - PoL T
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With the general definition of the momentum flux ratios
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where /, j indicates any component r, 8, x, one can rewrite the
continuity equation, equation (4) of Part I, as follows in func-
tion of mass-averaged quantities

p— =m p— =my
or (p“br KpxCT') + ox (0°br K,,Cx') =0 (6)

" This form of the continuity equation is completely rigorous

and consistent. The assumption behind the tangential blockage
formulation is that all the K; ~coefficients are equal

The radial momentum equatlon can be written in a similar
rigorous way as equation (3.13) of Hirsch and Dring (1987)

9 (pbre? c,")) + = (p"brc dc”') —p% T9Ty®
ar. - 6 , _
ap —a B .
=—br; +0°b(Fy, +Fy,) )

and ‘can be transformed to a formulation depending only on
mass-averaged quantities if all the Kj; coefficients are equal,
equation (3.23) of Hirsch and Dring (1987): '

The authors’ analysis and results might be an'indication that
this assumption is too severe. Some additional clarifications
and consistency checks in the authors’ analysis might however
be welcome in-order to conflrm this indication. "

(1) The stream function is defined on the basis.of the den-
sity-averaged velocities, while the mass-averaged rothalpy re-
quires the mass-averaged velocities to derive the static
thermodynamic variables from their stagnation values. How
has the. relation between these velocity components been in-
troduced in the authors’ calculations?

(i) In the previously reported analy81s based. on the block-
age formulation (Dring and Joslyn, 1986d, 1987), the tangen-
tial blockage factor has to be introduced in the definition of
the mass-averaged velocity components based on the stream
function, as seen from equation (6) of this Discussion. Also
the rothalpy [ is not constant along a streamline. Have these
effects been taken into account:in the previous analysis?

(7ii) “What is the validity of the assumptions' of potential
flow in the highly three-dimensional, viscous dominated end-
wall regions and of the resulting derivation of the pwy wy  term
based on potential flow computatxons" :
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Authors’ Closure

We are indebted to Professor Hirsch for the time and effort
that he spent in examining our work, particularly in light of
his considerable background in this area.

From Prof. Hirsch’s equations (2), (3), (4a), and (5), one
can arrive at equations (6) and (7). He is correct in. pointing
out that “‘if all the K, coefficients are equal’’ the equations
are greatly simplified. However, the data presented by Hirsch
and Dring (1987) in their Figs. 6(a-c) showed that while the
K; terms that only involved the axial and tangential compo-
nents of velocity were relatively uniform, the Kj; terms in-
volving the radial component of velocity varied very widely
and erratically. This variation in the K; terms suggests, as Prof.
Hirsch pointed out, that the assumption of equality ‘‘might
be too severe.”’

Some of Prof. Hirsch’s more specific questions are addressed
as follows:

Journai of Turbomachinery

Copyright © 1990 by ASME

(i) The mass-averaged rothalpy is not related to the static
variables through the mass-averaged velocities. The relation-
ship between the stagnation and static variables is established
through equations (14), (24), and (28a) in Part I of Dring and
Oates (1990) and in equations (10), (11), (17) and (18) in Part
11. The issue of how the static pressure is determined is dis-
cussed in Part I following equation (24). The only mass-av-
eraged velocity component in the analysis is in the absolute
angular momentum (r « C;~ ™), which is conserved along stream
surfaces (Part I, equation (21)).

(ii) Yes. Both of these effects are accounted for rigorously.

(iii) Iagree with Prof. Hirsch that the validity of applying
potential flow to estimate the W’ oW, term in the highly three-
dimensional and viscous endwall flow within the airfoil rows
is certainly threadbare. However, given the fact that the con-
tribution of this term in the present assessment was very small
(see Part I, Sensitivity Analysis, Case A: Neglecting H), this
very simple approach was deemed to be sufficiently accurate.
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Throughflow Theory for
Nonaxisymmetric Turbomachinery
Flow: Part ll—Assessment

Throughflow theory has been limited in its applicability and in its accuracy by the
Jact that it has not historically been cast in a form that can account for the nonax-
isymmetries that naturally arise in turbomachinery flow due to the presence of finite

R. P. Dring

United Technologies Research Center,
E. Hartford, CT 06108

G.C.0 numbers of rotor and stator airfoils. The attempt to circumvent this limitation by
. C. Oates , . : :

o i the introduction of an aerodynamic blockage factor has been demonstrated in
University of Véae:?tllggt\?vnﬁi earlier work to produce fundamental inconsistencies in the calculation, which lead

to significant errors in the regions of the flow where the nonaxisymmetries are
severe. The formulation in Part I of the present work is a derivation of a system of
throughflow equations for nonaxisymmetric flow. A benchmark database is used in
Part 11 to provide input to the calculation and to help identify the dominant terms. It
is demonstrated that the dominant effect of nonaxisymmetry is contained in two
terms that relate the total pressure of the averaged flow to the mass-averaged total
pressure. It also is demonstrated that the present formulation produces a result that
is more accurate than that obtained with the historical blockage-based formulation.

Background

Nondimensionalization. The assessment of the
throughflow formulation for nonaxisymmetric flow in tur-
bomachinery formulated Part I of this paper will be based on
an existing finite element throughflow analysis suitably
modified to include the effects of nonaxisymmetry in the flow.
The analysis that will be used is that of Habashi and Youngson
(1983). The axisymmetric version of this code solves equations
(22 a, b, ¢) in Part I of this paper. The remaining terms in
equation (22) were added in the present analysis.

The experimental data that will provide the input as well as
the experimental data for the assessment of the computed
results are the low-speed two-stage compressor data of Dring
and Joslyn (1986d and 1987). These data were acquired with
the compressor operating at near-stall conditions where the ef-
fects of the nonaxisymmetries in the flow were most severe. In
spite of the fact that the flow in this compressor was nearly in-
compressible (M <0.2), the assessment of the analytical model
will utilize the fully compressible form of the equations. This
was done in an effort to minimize the number of approxima-
tions and also in an effort to facilitate any future assessments
with high-speed (compressible) data. However, in light of the
nearly incompressible nature of the flow, the rothalpy-entropy
correction term [Part I, equation (22/)] will be replaced with
the rotary total pressure correction term, Part I, equation (27i)
(divided by density).

It is very convenient, both experimentally and analytically,
to utilize dimensionless input to the calculation and also to

Contributed by the International Gas Turbine Institute and presented at the
34th International Gas Turbine” and Aeroengine Congress and Exhibition,
Toronto, Ontario, Canada, June 4-8, 1989. Manuscript received at. ASME
Headquarters February 21, 1989. Paper No. 89-GT-305.

328 / Vol. 112, JULY 1990

Downloaded 01 Jun 2010 to 171.66.16.66. Redistributio%cs)gmgcqm&%&g?icc)ep%e%r

carry out the analytical/experimental comparisons on a
dimensionless basis. For this reason, the following reference
quantities will be used as a'basis for nondimensionalization:

Rm=(Rtip+Rhub)/2 (1)
U,=0R,, (2)

1
QU,,, ZT p; Uz, 3

where p; is the inlet static density. Pressures will be expressed
in terms of a pressure coefficient based on the absolute
pressure at the inlet and on Qu,,

P-P,
C,= (—0’) @
"\,

The various pieces of input data required by the new formula-

tion will now be discussed.

Total Pressure Loss. Total pressure loss was calculated by
circumferentially averaging the full-span traverse data, e.g.,
Part I, Fig. 1. The spanwise distribution of total pressure loss
across each airfoil row was determined by taking the dif-
ference between the mass-averaged absolute (or relative) total
pressures at the stator (or rotor) inlet and exit. This difference
was taken at a fixed radius and it was used in the analysis in a
consistent manner, i.e., as the difference at a fixed radius.
Loss was not taken along streamlines since their location is not
known a priori. As shown by Dring and Joslyn (1986d, 1987)
and elsewhere, loss may appear to be locally negative (i.e., an
apparent total pressure rise) due to radial transport of the flow
in and between wakes. Loss at a fixed radius also may be
negative due to radial displacement of stream surfaces. This
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can only occur, however, where there are radial gradients in
total pressure. Although the loss was based on measurements
at traverse planes some distance upstream of the airfoil
leading edge and some distance downstream of the trailing
edge, in the present calculation the loss was assumed to in-
crease linearly from zero at the airfoil leading edge to the
measured value at its trailing edge.

Finally, recall that the assumption of axisymmetric stream
surfaces was necessitated in the derivation of the conservation
conditions. This assumption is equivalent to neglecting
transport across stream surfaces by either deterministic sec-
ondary flows or by random diffusion (James, 1987; Adkins
and Smith, 1982; Gallimore and Cumpsty, 1986a, 1986b).
However, the method by which the total pressure loss is being
calculated from the measured data includes these effects. As
just stated, both experimentally and analytically the loss is the
net total pressure change due to all the mechanisms involved,

i.e., skin friction, stream surface rotation, diffusion, and so
on.

Exit Flow Angle. The spanwise distributions of airfoil exit
flow angle were determined from the density-averaged velocity
components according to equations (25) and (26) of Part I of
this paper. The importance of using the correct flow angle
definition can be seen from Fig. 2 of Part I where absolute and
relative flow angles have been calculated from the data ac-
quired in the absolute frame of reference at the first stator ex-
it. Significantly different angles can be calculated depending
on the definition chosen.

As suggested by the results of Popovski and
Lakshminarayana (1986), turning within each airfoil row was
distributed linearly from the leading edge to the trailing edge.

Airfoil Radial Frictional Forces. The radial component of
the airfoil frictional forces, F; ,, equation (22d), was neglected
in this assessment. This is justified on the basis that the flow
over the airfoils in the regions where the flow is attached, i.e.,
outside of the regions of corner separation, has only a very
small radial component.

Velocity Fluctuation Terms. The spanwise distributions of
these three terms [Part I, equations (22e-g) were calculated
from the velocity component data available at the traverse
planes downstream of each airfoil row. The following three
dimensionless parameters were calculated from the data:

DRR=(W,” W, 4)/U?, 5)

DRX = (W, W,"%)/U%, ®

DTT=(W, W, 4)/U?, Q)

It should be noted that while DRR, DRX, and DTT could
be calculated from the measured data at the traverse planes

Nomenclature
b = mechanical blockage term, equations (12) and
C = absolute flow speed (13) p = density
cl/B = rotor tip clearance to F, = airfoil pressure force o = pitch/chord ratio
chord ratio F; = airfoil friction force 7 = airfoil pitch
C, = pressure coefficient, equa- H = total enthalpy ¢ = stream function
tion (4) h = static enthalpy ¢ = flow coefficient=(C,/U,,)
CPS = static pressure coefficient H_, = composite interaction Q = rotation rate
CPTA = absolute total pressure term, equation (9)
coefficient I = rothalpy Subscripts
CPTR = relative total pressure K = blockage abs = absolute
coefficient L = scaling length, equation (8) i = inlet
D = diffusion factor, equation N = number of airfoils in a row p = airfoil pressure surface
19) P = static pressure r = radial component
DHA = absolute total enthalpy Qu,, = dynamic pressure based on s = airfoil suction surface
correction term U, rel = relative
DHR = rothalpy correction term, R = gas constant rot = rotary total
equation (15) r = radial coordinate x = axial component
DPA = absolute total pressure cor- R,, = radius at midspan 0 = total
rection term, equation (11) s = entropy 6 = circumferential component
DPR = rotary total pressure cor- T = static temperature .
rection term, equation (10) U, = wheel speed at midspan Superscripts
DRR = fluctuation term, equation W = relative flow speed —a = pitchwise area average
(%) x = axial coordinate —d = pitchwise density average
DRX = fluctuation term, equation o = absolute yaw angle —m = pitchwise mass average
6) B = relative yaw angle " = defined in equations (4)
DTT = fluctuation term, equation 6 = angular coordinate and (28) of Part I
(7 #, = mean camber line lean = fluctuation from the den-
DWT = absolute swirl correction angle sity average
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between adjacent airfoil rows, there was no intrarow data
available for their estimation within the airfoil rows. For this
reason, DRR and DRX were assumed to be zero within the air-
foil rows. DTT, however, was estimated within the airfoil

rows based on the airfoil potential flow analyses available
from hub to tip. This was done in spite of the fact that the
pressure distributions near the endwalls showed significant
departures from potential flow due to corner separation and
rotor tip leakage.

The axial derivative in equation (22f) of Part I and the
evaluation of the fluctuation terms at calculation planes up
and downstream of the traverse planes were based on the
assumption of an exponential decay of the three parameters.
For example

DRX(X) = DRX(X,)exp(~ (X — X,)/L) (8)

In this expression, L is a scaling length that models the deéay
rate of the measured data and it was taken to be half of the air-
foil chord.

Airfoil Radial Pressure Forces. The radial component of
the airfoil pressure force was treated in the form derived by
Jennions and Stow (1985) as in equation (22A4) (Part D).
Although the flow in the core flow region produced rotor and
stator pressure distributions which were very close to potential
flow (Dring and Joslyn, (1986d) the flow in the endwall
regions had major deviations from potential flow (due to hub
corner separation and rotor tip leakage). Thus, in the core
flow region, a potential flow calculation could have been used
to determine (P, — P?) and (P° — P;) in equation (224) (Part I).
In the endwall regions, however, such a calculation would
have been subject to grave doubt. Since the full-span pressure

330 / Vol. 112, JULY 1990

distributions were measured on both the rotor and the stator,
an alternative approach was taken utilizing equation (29) of
Part 1. In this form (P, —P,) was available directly from the
measured airfoil pressure distributions and the radial
derivatives of the airfoil mean camber line angular location
(0,) was determined from the airfoil geometry.

Thermodynamic Fluctuation Term. The.thermodynamic
fluctuation term, Part 1, equation (22¢), involves the cir-
cumferential variations of entropy, enthalpy and temperature.
However, since the present comparison is based on a low-
speed experimerit (M= 0.2) with only very small density and
temperature variations, and since this term does not appear in
the incompressible form of the averaged momentum equation,
Part I, equation (27), it was neglected.

As was mentioned in Part I, the velocity fluctuation terms
can be combined with the airfoil radial pressure force term to
form a single additive term on the right-hand side of the
momentum equation. This is possible because, aside from
density, these terms contain no computed information.
Hence, for the present nearly incompressible case, these four
terms have been collected into a single dimensionless term as
follows:

R 1\
H = tm {(_—__>—_ . DRR U2
=5 () 37 (0ri*+DRR-U})

1 0 —
+ | —— “DRX.U2
<brp" dx (bre Uin)

___1_ ° —-—]—V———-— - ° 601
— (DTT-U})+ snbgr (GO~ Gy, r} ©9)

Rothalpy/Entropy Average Term. This is the term, Part [,
equation (22/), that reconciles the different natures of the
averaged rothalpy and entropy that arise in the momentum
and conservation equations. Since the database for the present
assessment is for a virtually incompressible flow, this term will
be evaluated based on rotary total pressure (Hawthorne, 1974)
instead of rothalpy and entropy. This is the naturally occur-
ring variable for incompressible flow, Part I, equations (27b)
and (27/)). For this reason, the following dimensionless
parameter was determined from the data at the traverse planes
between adjacent airfoil rows for the rotating frame of
reference:

DPR=(Py, o = Pl o)/ Qu

m

for the absolute frame of reference one must use the following
in place of equation (10):

DPA = (130, abs ﬁ%)': abs)/QUm

(10

(n

Both DPR and DPA also were assumed to vary with axial
distance up and downstream of the traverse planes in the same
exponential manner as DRX in equation (8). Note that, as
with H,, equation (9), aside from the effects of density, these
terms, equations (10) and (11), are also only additive terms on
the right-hand side of the momentum equation. They play no
active role in the iterative process, that is, aside from density
they contain no computed information.

Absolute Angular Momentum Average Term. This is the
term, Part I, equation (22k), that reconciles the naturally oc-
curring density-averaged absolute swirl that arises in the
momentum equation with the mass average that occurs in the
conservation equation. The following dimensionless
parameter was determined from the traverse data between ad-
jacent airfoil rows:
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Fig. 4 Spanwise distributions of the reiative and absolute total
pressure distortion terms and the relative total pressure loss at the
second rotor exit.

DWT=(W¢—-wW;/U,, (12)

=(C}-Cy)/U, (13)
Unlike the previous fluctuation terms, which were essentially
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Fig. 5 Spanwise distributions of the relative and absolute total
pressure distortion terms and the absoiute total pressure loss at the
second stator exit.

only additive terms on the right-hand side of the momentum
equation, this term does play an active role in the calculation.
This is because of the presence of WY in equation (22k) (Part
I), which is not known a priori and which is determined as part
of the solution iteration.

The final form of the averaged radial projection of the
momentum equation being employed in this low Mach
number assessment is as follows for the rotating frame of
reference:

— [ 2 1 o ) a ( 1 o )]
7 i e 14
x[ar (rbf)” or ax \brp® ox (142)
arm —(65'"> ’Wg(ar”c‘;,")
= - ——f 14b
(ar) Td ar r or (146)
2
+H,e YU (14¢)
R,
14 :
+ o (DPR‘QU ) (14d)
p? or m
wi b : :
- — ("DWT-U,,) (14e)

o
Some Additional Relationships. Since, as was previously
stated, this assessment will be based on the compressible form

of the equations and not on the incompressible form, some ac-
commodation must be made to relate the relative and absolute

JULY 1990, Vol. 1121 331

Downloaded 01 Jun 2010 to 171.66.16.66. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



total pressure correction terms (DPR and DPA) to analogous
correction terms for the total relative and absolute enthalpy
(and rothalpy). This is required since, for the compressible
flow calculation, the static and total enthalpies are related
directly to velocities, (Part I, equation (14), and the static and
total pressures are calculated from them.

Defining DHR in a manner analogous to DPR

P 1
DHRE(I—-I’")/—z—Uf,, (15)
it can be shown that (Dring and Oates, 1988)
DPR = (p°/p;,)DHR (16)

With this expression, even the small changes in density that oc-
cur between the inlet static density and the density at some
location within the compressor can to some extent be ac-
counted for. The same expression also can be derived for the
total enthalpy and pressure correction terms in the absolute
frame of reference. The absolute and relative correction terms
are related through equation (24) of Part I as follows:

DHR =DHA - 2(DWT)(*/R,,) (17)

DPR =DPA — 2DWT)(/R,,)%%/p;) (18)

In the present calculations DWT will be calculated from the
measured distributions of DPR and DPA.

Assessment

Input Data. This formulation of throughflow theory will
be assessed by utilizing a benchmark database acquired on a
large-scale, low-speed, two-stage axial compressor.The
database consists of full-span, stationary, and rotating frame
traverse data acquired in planes downstream of the first-stage
stator, and downstream of the second-stage rotor and stator.
These will be referred to as planes 3, 4, and 5, respectively.
This section will provide a summary of these input data for the
case of the compressor operating at its near-stall flow coeffi-
cient (¢ =0.45) with a large second-stage rotor tip clearance
(cl/B=0.041). This case was chosen for the assessment since it
had the highest degree of nonaxisymmetry in the flow and,
hence, it would be a severe test case for the new formulation.

In order to provide some perspective as to where the effects
of nonaxisymmetry are most important, the aerodynamic
blockage profiles are presented in Fig. 1. The definition of this
expression for aerodynamic blockage is given by Dring (1984).
These profiles were not used in the present assessment but they
do show that the regions of most severe nonaxisymmetry in
the flow (i.e., the regions of highest blockage) were at the hub,
and especially in the regions aft of the stators (see Part I, Fig.
1). The nature of the flow in this compressor has already been
discussed extensively in the literature (Dring and Joslyn, 1983,
1984, 1985, 1986b, 1986¢, 1986d, 1987).

The spanwise distributions of the flow angles measured at
the traverse planes downstream of each airfoil row are shown
in Fig. 2. They are based on the flow angle definition in equa-
tions (25) and (26) of Part I.

The spanwise profiles of DPR and DPA, equations (10) and
(11), input to the calculation at the traverse planes, are shown
in Figs. 3-5. In order to provide some indication of the
magnitude of these terms, the spanwise distributions of the
area and mass-averaged total pressure loss also are included
on the plots for the traverse planes downstream of the second-
stage rotor and stator. Several things are evident in these
results: (1) The area and mass-averaged total pressure losses
are significantly different. Recall that only the mass-averaged
loss is consistent with the formulation. (2) DPR and DPA are
always negative. This is because, for these data, the mass-
averaged total pressure is always greater than the total
pressure of the density-averaged flow, equations (10) and (11).
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The generality of this observation, however, remains to be
demonstrated. (3) DPA is greater than DPR aft of stators and
DPR is greater than DPA aft of rotors. (4) Finally, the
magnitudes of DPR and DPA are comparable to the total
pressure loss across each row. Recall that DWT was calculated
from DPR and DPA according to equation (18) and that the
decay of these terms up and downstream of the traverse planes
was assumed to be exponential, according to equation (8).

Parenthetically, it was demonstrated that the contribution
of the static pressure distortion to DPR and DPA (.e,
Pi-pPmM/ Qum) was generally much smaller than that of the
dynamic pressure. This fact may be seen in the data presented
by Hirsch and Dring (1987), in Figs. 3(a-c) of that work,
where a similar observation was made. This suggests that DPR
and DPA may be accurately determined from velocity
measurements, such as laser or hot-film anemometry data, ac-
quired between the airfoil rows of a compressor. This approx-
imation would be even more accurate at less severe conditions
farther from stall.

The term that includes all of the interaction terms derived
by Hirsch and Warzee (1979), H, in equations (9) and (14c¢),
was determined from potential flow calculations and from
measured airfoil pressure distributions within the airfoil rows
and from traverse data in the regions between adjacent airfoil
rOwS.

Comparison of Measured and Computed Results. The
comparison of the measured and computed results is shown in
Figs. 6-10. In varying degrees, the agreement obtained with
the present formulation of the throughflow equations was bet-
ter than that obtained with the blockage formulation. In some
respects, the predictions were similar but in others there were
significant local differences.

The measured and predicted hub and tip static pressure
distributions are shown in Fig. 6. The measured data are in-
dicated by sets of three symbols representing the maximum,
average, and minimum in the circumferential variation of
static pressure, These circumferential variations are due to the
pressure distributions of the rotor and stator airfoils.

The agreement between the measured and the computed
static pressure results is, in general quite good. It also is com-
parable to the agreement that was obtained with the blockage

STATIONS

. !
2 0.57
O

COMPUTED TIP

-0.5 T T T T T
-12 -6 0 6 12 18 24

X (inches)

Fig. 6 Finite element grid and the hub and tip static pressure
distributions .
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formulation (Dring and Joslyn, 1986d, 1987). The prediction
is below the data at Plane 4 (aft of the second rotor) at the tip.
This has been demonstrated to be due to the large rotor tip
clearance in this test (c//B =0.041). The other area of disagree-
ment is at Plane 6, far downstream of the second stator trail-
ing edge. The slightly high predicted static pressure at the hub
at Plane 6 may be a result of letting DPR and DPA decay too
quickly. Recall that the decay length (L) used in the calcula-
tions (equation 8), for locations upstream and downstream of
the traverse planes was half of the airfoil chord. A longer
decay length would have caused the hub static pressure at
Plane 6 to be lower. In summary, an accurate prediction of the
flow path static pressure has been achieved with the new for-
mulation without the use of aerodynamic blockage.

Since measured data were only available beginning at the
first stator exit (Plane 3), the computed spanwise total
pressure distribution at this location was matched to the data
by adjusting the loss and deviation in the first-stage rotor and
stator (Fig. 7). The excellent agreement between the measured
and computed static pressure distribution, however, is a result
of the throughflow model. Once the total pressure is set, the
static pressure is determined by the stator exit flow angle (Fig.
2) and by DPR and DPA (Fig. 3). The minimium, average, and
maximum hub and tip static pressures also are shown in Fig. 7
at 0 percent and 100 percent span.

The spanwise distributions of the remainder of the com-
puted results at the first stator exit (Plane 3) are shown in Fig.
8. The relative flow angle, Fig. 8(a), is well predicted, even
near the hub where the nonaxisymmetry was strong (Fig. 1).
The agreement in this region is better than that obtained with
the blockage formulation (Dring and Joslyn, 1987, Fig. 5).
The angle errors for that case where two to three times as great
as those in Fig. 8(@). The main reason for this improvement is
due to the more consistent angle definitions in the present for-
mulation, equations (25) and (26) of Part I. The axial velocity
component is well predicted (Fig. 8b). Agreement at the hub
and at the tip is slightly better than with the blockage formula-
tion (Dring and Joslyn, 1987, Fig. 5). The relative total
pressure also is predicted accurately (Fig. 8c). Agreement is
comparable to that with the blockage formulation.

The spanwise distributions of the computed results aft of
the rotor (Plane 4) are shown in Fig. 9. Recall that the degree
of nonaxisymmetry produced by the second-stage rotor is
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Fig. 8 Spanwise distributions of the relative flow angle, the axial com-
ponent of velocily, and the absolute and relative total and static
pressures at the first stator exit.

significantly less than that produced by either of the stators.
This can be seen by the magnitudes of the blockage (1 —K),
and DPR and DPA (Figs. 1, 3, 4, and 5). It is not surprising
then that the agreement between the prediction and the data at
this plane is excellent and that the prediction is only slightly
better than that of the blockage formulation (Dring and
Joslyn, 1987, Fig. 7). Both predictions of the absolute flow
angle close to the tip fall short of the data (Fig. 9a) due to the
large rotor tip clearance and the strongly three-dimensional
flow that it produces (Part I, Fig. 1). This also can be seen in
Fig. 9(c) where the prediction closely follows the static
pressure out to about 90 percent span. The large tip clearance
causes a slightly increased gradient from there to the tip,
which the prediction does not capture. This effect also was
mentioned with regard to the computed tip static pressure at
this plane in Fig. 6.

The spanwise distributions of the computed results aft of
the second stator (Plane 5) are shown in Fig. 10. Recall that
the degree of nonaxisymmetry produced by the second stator
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Fig. 9 Spanwise distributions of the reiative flow angle, the axial com-
ponent of velocity, and the absolute and relative total and static
pressures at the second rotor exit.

is far greater than that produced by any of the other airfoils.
This can be seen by the magnitudes of the blockage (1 —K),
and DPR and DPA (Figs. 1, 3, 4, and 5). Note that the
blockage near the hub at this plane approaches 40 percent.
The data at this plane, therefore, represent the severest test of
the prediction in this assessment.

The agreement between the measured and computed relative
flow angles out to 30 percent span is much better with the
present formulation (Fig. 10a), than with the blockage for-
mulation (Dring and Joslyn, 1987, Fig. 9) where local érrors
approached 6 deg. The main reason for this improvement is
due to the more consistent angle definitions in the present for-
mulation, equations (25) and (26) of Part I. As discussed
earlier, and as shown in Fig. 2 of Part I, the magnitude of the
relative flow angle depends strongly on how it is defined. The
axial component of velocity, and the static, absolute, and
relative total pressures are all in better agreement with the data
with the present formulation than with the blockage formula-
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Fig. 10 Spanwise distributions of the relative flow angle, the axial com-
ponent of velocity, and the absolute and relative total and static
pressures of the second stator exit.

tion. This is especially true near the hub and tip where nonax-
isymmetry is the strongest.

In summary, the present formulation gave an accurate
prediction of nearly every feature of the flow at this challeng-
ing near-stall flow condition.

By way of global accuracy, at midspan both formulations
were about 1 percent high in predicting the second-stage static
pressure rise, 2 percent high in predicting the absolute total
pressure rise, and 4 percent high in predicting the relative total
pressure rise. It is difficult to say whether this discrepancy lies
in the data or in the formulation.

Airfoil loading parameters calculated in the throughflow
analysis that are of particular interest to compressor designers
include the dimensionless static pressure rise, AP/Q, and the
diffusion factor, ‘D>’ (Johnsen and Bullock, 1956), defined
as follows:

D=(1—-V,/V)+(AV4/26V}) (19)
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Fig. 11 Spanwise distributions of the ditfusion factor for the second-
stage rotor and stator

V, = inlet velocity
V, = exit velocity

AV = tangential velocity change
o = pitch/chord ratio

The predicted static pressure rise parameter distributions
for the rotor and the stator were similar for the two formula-
tions. The diffusion factors, however, were very different
(Fig. 11). This difference was greatest for the second stator,
near the hub. This is a critical difference in diffusion factor
since airfoil total pressure loss begins to increase dramatically
as the diffusion factor rises beyond 0.6. The reason for the dif-
ference in the diffusion factors for the two formulations is
that in the blockage formulation the velocities (V,, V,, and
AVy) are usually based on ‘‘blocked” velocity components
(which are similar to mass averages). These may be converted
to unblocked’’ velocity components (which are similar to area
averages) by multiplying them by the local blockage factor
(K). In the present formulation, the velocities are based on the
density-averaged velocity components (which are close to area
averages in this low-speed assessment). An example of the im-
pact of using these different velocities is as follows for the 10
percent span location for the second-stage rotor and stator.

Blockage Formulation: Rotor 2 Stator 2 .
“D’ factor with blocked velocities (*)  0.661 0.591
“D* factor with unblocked velocities 0.571 0.854
Present Formulation:
‘D> factor 0.720 0.930

(change relative to *) (+9 percent)  (+ 57 percent)

If the blockages at a particular spanwise location at the inlet
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and at the exit of an airfoil row are equal then the effects of
blockage will cancel in the calculation of “D’’, Hence, the
blocked and unblocked ‘D’ factors will be equal. However,
if the blockages at the inlet and at the exit of an airfoil row are
not equal, they will change the ‘“D’’ factor. This is the case in
the foregoing examples at 10 percent span (at Planes 3-5,
1-K=0.821, 0.928, and 0.617).

The important aspect of this discussion is not which *“D”’
factor distribution is correct but rather it is that widely dif-
ferent ‘D’ factors can be calculated depending on the
assumptions used. It is important that the ‘D’ factor used in
any loss correlation be consistent with the one calculated in the
throughflow analysis.

Sensitivity Analysis. A series of calculations were carried
out to determine the sensitivity of the computed results to
various simplifying assumptions. This step was felt to be
essential due to the very large amount of input data required
by the present formulation. In its complete form, the input
data require the specification of spanwise distributions of
most of the terms on the right-hand side of equation (14).

With this much input, the exact formulation could never be
used as a practical design analysis. A major simplification
would be achieved if some assumption would be made about
the many terms collected into the single term A, equation (9),
in equation (14). This and other attempts to simplify the input
are discussed next and they are judged in terms of the errors
that they produce relative to the base case just discussed.

Case A: Neglecting H,. The most powerful simplifying
assumption with regard to H, is to neglect it completely, i.e.,
by setting H, =0, Both the local as well as the global effects of
this assumption were seen to be extremely small. The changes
to the static and to the relative and absolute total pressures at
midspan were less than 0.1 percent of the stage pressure rise
and less than 0.5 percent for the rest of the flow field. The
changes in incidence were small fractions of a degree. These
observations were consistent with the fact that the contribu-
tion of H, to the right-hand side of the throughflow equation
was typically very small, i.e., about 2 percent.

The insensitivity of the computed results to H, indicates
that the main influence of the nonaxisymmetry of the flow on
the computed results is through DPR and DPA. After ne-
glecting H,, the input to a calculation would consist of only
the total pressure loss, the exit flow angle, and DPR and DPA.
The potential of further simplifying the input by specifying
cither DPR or DPA was explored as discussed next.

Case B: Neglecting DPR or DPA. Since DPR was larger
than DPA in the region aft of the rotor (Fig. 4) and since DPA
was larger than DPR in the regions aft of the stators (Figs. 3
and 5) a calculation was carried out neglecting the smaller of
the two correction terms at each calculation plane, i.e., setting
DPA =0 in the region aft of the rotor and setting DRP =0 in
the regions aft of the stators. The objective here was to reduce
the amount of input required by the present formulation to be
equal to that required by the blockage formulation. The im-
pact of this simplification was to produce errors in the stage
static, and absolute and relative total pressure rises of from 4
to 7 percent. In all cases, these errors were negative, i.e.,
reductions in pressure rise. The errors in incidence were
typically =1 deg. These errors may seem unacceptable but it
should be kept in mind that this is a very severe near-stall flow
condition and that the errors at design flow conditions could
be much smaller.

Case C: Neglecting DPR and DPA. A calculation was
carried out with DPR and DPA set to zero at all locations. The
impact of this simplification was to produce errors in the stage
static , and absolute and relative total pressure rises of from 5
to 14 percent. In all cases, these errors were positive, i.e., in-
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creases in pressure rise. The errors in incidence were typically
+3 deg to —6 deg.

Case D: Blockage Calculation With Consistent
Angles. A final comparison was carried out based on the
blockage formulation. However, instead of using mass-

averaged exit angles [as had been done previously, Dring and .

Joslyn, 1986d, 1987], the exit angles were based on the mass-
(and not area) averaged velocity components. The differences
between these definitions are very small at the first stage stator
exit and at the second-stage rotor exit. For the second-stage
stator exit, however, the differences are large near the hub (up
to 4 deg).

For this compressor, it made very little difference which
angle definition was used. Where the agreement has been
poor, as at the second stator exit near the hub, the blockage
formulation gave similar poor agreement regardless of the dif-
ferences in the input data. The previous assessment of the
blockage formulation (Dring and Joslyn, 1986d, 1987) in-
dicated that the error between the measured and the computed
results in this region was typically 5 deg. The impact of using
the more consistent angle definition was very small (=1 per-
cent in pressure rise and = 0.3 deg in incidence). Using a more
consistent angle definition in a basically inconsistent formula-
tion doesn’t appear to improve it significantly.

Conclusions

A formulation of a throughflow theory for nonaxisym-
metric flow in turbomachinery has been assessed (1) against a
benchmark database for a low-speed two-stage compressor
operating at near-stall conditions, and (2) against an approx-
imate throughflow formulation based on aerodynamic
blockage factors. The present formulation satisfies both the
mass flow requirements through the use of density-averaged
velocity components, as well as the thermodynamic re-
quirements through the use of mass-averaged conservation
conditions. While the theory does not require aerodynamic
blockage as input, it does require the specification of at least
two parameters describing the nonaxisymmetric nature of the
flow (DPR and DPA). Specific conclusions are as follows:

1 The present formulation produces a result that is
significantly more accurate than that of the approximate
blockage formulation.

2 Modeling nonaxisymmetric effects with a multiplier on
the continuity equation (blockage) is inconsistent and
inaccurate.

3 Nonaxisymmetric effects should be modeled as correc-
tion terms for the quantities that are conserved on stream sur-
faces (entropy, rothalpy, and angular momentum). These cor-
rections could be based on detailed documentation of the flow
field, as in the present assessment. Where such detail is not
available, they could be inferred from the data that is available
in the same manner as has historically been done for blockage.

4 Flow angles must be defined as the arctangent of the
density-averaged tangential velocity component divided by the
density-averaged axial velocity component, equations (25) and
(26) of Part I), and not as averaged angles.

5 The choice of the definition of the flow angles can
significantly alter airfoil incidence.

6 Not only are the flow angles based on averaged velocity
components necessary for an accurate throughflow analysis,
but they also give a more accurate result in the airfoil potential
flow analysis.

7 Total pressure losses must be mass-averaged. There are
significant differences between area and mass-averaged losses.

8 The terms DPR and DPA, equations (10) and (11), are
sufficient to describe the effects of the nonaxisymmetry in the
flow accurately. :

9 Care must be taken when using the diffusion factor
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calculated in a throughflow analysis as a measure of airfoil
loading. The value that is calculated depends strongly on the
nature of the throughflow formulation (present versus
blockage). Local differences approaching 60 percent were
demonstrated.

10 The magnitude of the diffusion factor calculated in the
blockage formulation depends strongly on whether it is based
on blocked or unblocked velocities. Local differences ap-
proaching 45 percent were demonstrated.
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A Parametric St'udy of Radial
Turbomachinery Blade Design in
Three-Dimensional Subsonic Flow

W. S. Ghaly

Mechanical Engineering Department,
Ecole Polytechnique de Montreal,
Montreal, Quebec, Canada

An aerodynamic design method is described and used to implement a parametric
study of radial turbomachinery blade design in three-dimensional subsonic flow.
Given the impeller hub and shroud, the number of blades and their stacking posi-
tion, the design method gives the detailed blade shape, flow, and pressure fields that

would produce a prescribed tangentially averaged swirl schedule. The results from
that study show that decreasing the number of blades increases the blade wrap, and
that the blade loading is strongly affected by the rate of change of mean swirl along
the mean streamlines. The results also show that the blade shape and the pressure
field are rather sensitive to the prescribed mean swirl schedule, which suggests that,
by carefully tailoring the swirl schedule, one might be able to control the blade shape
and the pressure field and hence secondary flow.

1 Introduction

There are two approaches to solving the flow in a tur-
bomachine. In the first one, known as the direct problem, the
geometric configuration is specified and the flow and pressure
fields are sought. The second approach, called the design (in-
direct or inverse) problem, is based on specifying part of the
geometry and part of the flow or pressure field, and the solu-
tion provides the remaining part.

There exist many methods for designing blades in the merid-
ional plane (plane r-z, Fig. 1(@)) and in the blade-to-blade
plane (Projection AA, Fig. 1(b)). There are also some quasi-
three-dimensional methods where two design methods (one in
the meridional plane and one in the blade-to-blade plane) are
combined (e.g., Jennions and Stow, 1985a; Kashiwabara,
1973). A fully three-dimensional inverse design method for
lightly loaded blades has been developed by Okurounmu and
McCune (1974a); another three-dimensional design method
for high solidity cascades has been reported by Zhao et al.
(1985).

A theory for turbomachinery blade design for large deflec-
tion in three-dimensional flow is described by Hawthorne et
al, (1983) and Tan et al. (1982, 1983). In that theory, it is
possible to determine the blade shape that would produce a
prescribed tangential averaged (or mean) swirl schedule. Dang
(1985) extended that theory to rotational flows; he solved the
flow in a rectilinear cascade and devised a method to control
secondary flow. Using the same theory, Borges (1986)
developed a computer code for designing a low-speed radial
inflow turbine (RIT); his work showed that his newly designed
impeller achieved an improved efficiency over a rather wide
operating range. Ghaly (1986) further extended the theory to
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the subsonic flow in a turbomachine of arbitrary hub and
shroud profiles. In a recent progress report on the design
method, Hawthorne and Tan (1987) presented the design of an
axial compressor stage as well as that of a marine propeller
with two counterrotating rotors.

In this paper, we present a preliminary design study of the
influence of the mean swirl distribution, the number of blades,
and their stacking position upon the blade shape and the
pressure distribution for a radial turbine. Two projections of a
typical low-speed radial turbine impeller are given in Fig, 1.
Note, however, that the present study was carried out for a
hypothetical impeller in which the hub and shroud surfaces
form two concentric circular arcs in the meridional projection,
The flow is assumed to be steady and irrotational, the fluid in-
viscid and non-heat conducting. The blades are as-
sumed to be infinitely thin and set at zero angle of attack. In
the design approach to be described here, the hub and shroud
profiles are specified, the number of blades, their stacking
position, and the tangential averaged (or mean) swirl schedule
is prescribed in the blade region, and the blade shape and flow
field (other than the mean tangential velocity) are sought. In
this paper, the mean swirl schedule is taken to be of the free
vortex type. The blade shape is determined iteratively from the
blade boundary condition, which requires that the flow should
be tangent to the blades.

2 Analytical Formulation

2.1 Governing Equations. With the abovementioned
assumptions and in the absence of shocks, the flow may be
considered homentropic and homenergetic (the entropy and
the rothalpy are constant everywhere in the flow field). Thus,
the continuity equation, Crocco’s equation, the energy equa-
tions, and the equation of state may be written, respectively,
as '
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and, for a homentropic flow of an ideal gas (thermally and
calorically perfect), the isentropic relation holds so that

()= () =

where P, p, T are the fluid pressure, density, and temperature,
V is the velocity vector in the absolute frame of reference, W is
the velocity vector relative to the impeller (W =V —wreg), @ is
the vorticity vector, H} and H, are the rothalpy and total en-
thalpy (H, = H+0.5V?%), H is the static enthalpy, v is the ratio
of specific heats at constant pressure and at constant volume,
wreg is the impeller velocity, and (r, ©, z) denotes the right-
handed cylindrical coordinate system.

In the limit of an incompressible fluid flow (o = const), the
density drops out from the continuity equation and the en-
thalpy H is replaced by P/p.

2.2 The Clebsch Approach. In the Clebsch formulation,
the velocity is kinematically decomposed into a potential and a
rotational part in the following form (Lamb, 1945):

T \ -1
)‘Y Y (5)

Y

V=Vo+0oVr ©6)

where ¢(r, O, z), o(r, O, 2), and 7(r, O, z) are the Clebsch
variables. In the present problem, they can be identified with
the mean swirl schedule and a function of the blade shape so
that the vorticity field @ may be written as (Ghaly, 1986; Tan
et al., 1983)

Q=v xV (7a)
=VoX VT (7b)
=VrVgx Vad,(a) (7¢c)

where the blade surface a(r, O, z) can, without loss of
generality, be written (e.g., in the blade region) as
a(r, ©,2)=0—fr,2)= £j(27/B) (8)

where j is an integer and B is the number of blades (see Fig.
1(d)). The §,(c) in equation (7c) is the periodic delta function
(Lighthill, 1969) given as

J=+o

J=—0

bplo) = ®

where i=2v — 1. An overbar defines a tangential average or
mean, so that for any variable A(r, O, z)

27/B

Alr, z):mgo A(r, ©, 2)d6 (10)

With the assumptions prescribed here, the flow upstream
and downstream of the blade row is irrotational so that all the
vorticity will be contained in the blades; thus the vorticity as
given in equation (7¢) will represent the vorticity in the entire
flow field and it will vanish outside the blade.

As the flow is periodic in the circumferential direction, it is
convenient to express the flow variables as a sum of a mean
part () and a periodic part (7). This sum corresponds to the
mathematical representation of the flow variables by a Fourier
series in which the mean part, e.g. ©, is the zeroth harmonic
while the periodic part € constitutes the nonzeroth harmonic.
Integrating @ given by equation (7¢), the velocity field may be
written as (Ghaly, 1986; Tan, 1983)

V=Vo+rVeVa—S)vVrVy an

where the mean and periodic parts of the velocity field can be
written as

Nomenclature
B = number of blades Subscripts
Cp = reduced static pressure bl = at the blade
coefficient, equation (29) a = blade surface, equation (8) LE = blade leading edge
e = unit vector I' = blade circulation m = meridional plane, r-z
f = Dblade shape v = specific heat ratio plane, Fig. 1(a)
H = enthalpy 6,(c) = periodic delta function, ref = mean line value at the
m = distance along streamlines equation (9) blade LE
of the mean flow p = density r, ©, z = ther, O, z component
P = pressure pay = average density, equation st = stacking position
(r, ©, 7) = cylindrical coordinates . a7 TE = blade trailing edge
RIT = radial inflow turbine ® = periodic scalar potential t = total, stagnation
S(a) = sawtooth function, equa- function harmonics, equa-
tion (14) tion (23) Superscripts
Se = entropy ¢ = scalar potential function, +/— = blade pressure/suction
T = temperature equation (11) surface, Fig. 1(b)
Y, W = absolute and relative Y = Stokes stream function, * = rotary
velocity vectors equation (19) (") = tangential average, equa-
v = absolute periodic velocity . = vorticity vector tion (10)
vector w = impeller rotational speed (") .= periodic part
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V=vé+r¥,va (12a)
V=véd—Sa)vrv, (13a)

in the blade region; and since in the upstream and downstream
regions the flow field is irrotationa, it follows that

V=vé (12b)
V=vé (13b)
In equation (13a), S(a) is the sawtooth function (Lighthill,
1969) given as
Jhe LijBa
a2 UB
#0

S(o) = (14)

The entire flow field, with the assumptions stated above,
can now be computed in terms of the Clebsch variables ¢, ¢,
and o (rVg being prescribed in the design problem). The gov-
erning equations for the mean and periodic flow are derived in
the next section.

2.3 Flow Equations

2.3.1 Mean Flow Equations.
may be rewritten as

The continuity equation

VW= —-W-Vin(p/p}) (15)
the pitch average of which gives
VeV=vVeW=-W-Vin(/o}) (16)

The right-hand side is a nonlinear term that couples the
periodic flow field with the mean as a result of
compressibility.

For computational reasons, the mean flow is formulated in
terms of Stokes’ stream function y rather than the scalar
potential ¢ given in equation (12). In using ¥ to describe the
mean flow, it is convenient to define a fictitious ‘‘average’’
density p,,(r, z) (p,, #p) that satisfies

Vop,, V=0 an

Comparing equation (17) with equation (16) we obtain a
governing equation for p,, as

Ve vin(p,,/pH=WsVin(p/p}) (18)

which yields the ‘‘average’’ density p,, (When solved with an
appropriate initial condition).

Equation (17) can now be satisfied by introducing the
Stokes’ stream function y¥(r, 2)

of Y - pf oY
d V, = —
r 9z M P Ve =77 5,

Pay I;vr= - (19)

The governing equation for ¥ is obtained by equating the
definition of Qg from equation (17a) to that from equation
(7¢) using equation (19); this gives

L—NW=—(p/p"H 0 (20
where
I ] (1 ] >+ ] (1 ] )
T ar \r or 0z \r 9z
1 dln d dln i}
s e e
and
. orvy of Ve of
"o oz oz  or

Equation (20) is elliptic when the flow is subsonic and hyper-
bolic when the flow becomes supersonic. Note that the right-
hand side vanishes outside the blade region as the flow is ir-
rotational there.
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The boundary conditions for equation (20), when the flow is
subsonic, are:

® along the inflow and outflow sections, dy/dn=0
e along the hub and the shroud, ¥ is constant (no flow
normal to the wall).

A useful flow model, the Bladed Actuator Duct (Tan et al.,
1983), is obtained when the number of blades B becomes in-
finite, while rVq is kept fixed. In the Bladed Actuator Duct
(B— ), the periodic part of the flow vanishes, hence V=0,
b =p,,, and equation (18) is identically satisfied. In that limit,
a blade shape can still be determined, as will be described in
Sec. 2.4,

2.3.2 Periodic Flow Equation. The continuity equation
for the periodic part of the flow is obtained by sutracting the
pitch-averaged continuity equation in equation (16) from the
continuity equation in equation (15), yielding

Vev=—-WeVIn(p/p)+WeVin(/p}) 2n

Substituting for v in terms of its Clebsch variables from equa-
tion (13) we obtain

V2=V (S()VrVg} —WeVin(o/pH+WeVin(p/p}) (22)

where V2 is the Laplacian. The first term on the right-hand
side vanishes outside the blade region as the flow is assumed to
be irrotational there, while the other two terms vanish in the
incompressible flow limit,

The boundary conditions for equation (22), when the flow is
subsonic, are:

e along the inflow and outflow sections, ¥(= vV $) is assumed
to be negligibly small so that d¢/dn is approximately zero
there;

® along the hub and shroud, there should be no flow normal
to the wall so that d¢/dn vanishes there (Ghaly, 1986).

Equation (22) can readily be solved for ¢(r, O, z) if the
right-hand side is known. As mentioned in the above, because
of inherent periodicity in the © direction, a Fourier series is
used to represent the © dependence of any of the flow
variables. Accordingly, ¢ may be approximated with a trun-
cated Fourier series of the form

j=N-1

ﬁE (;Zj(r, 2) oliBO

j=-N
#0

é(r,0,2)= (23)

where i=2v —1. Substituting for ¢ from equation (23) into
equation (22) and by making use of the orthogonality property
of the Fourier series, a set of equations for the Fourier coeffi-
cients ¢;(r, z) is obtained; thus, the flow periodicity in the ©
direction has been used to reduce a three-dimensional elliptic
problem (equations (20), (22)) into a set of two-dimensional
ones. The Finite Element Method is used to solve the equa-
tions describing the mean and the periodic flows.

2.4 Blade Boundary Condition. The remaining boundary
condition is the blade boundary condition, which states that
the velocity normal to the blade surfaces vanishes. Since Va is
normal to the blade surfaces, the blade boundary condition on
the pressure and suction sides of the blades may be written as

WHeVa=0 and W-evVa=0 (24)
Adding and subtracting the above equations, we obtain
W, eVa=0 25a)
AWeVa=0 (26)
where the velocity at the blades is defined as

Wy, =1/2(W* + W~ ) and the velocity jump across the blades
is given as AW=W+* ~W~-, Equation (26) is identically
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satisfied since AW is a measure of the bound vorticity, which
lies in the blade surface.
Equation (25¢) may appropriately be integrated to obtain

the blade shape f(r, z). It may also be written as
I _
V,——=VeVf=Wy/r+i,+Va

" am S ) bl

where m denotes distance along the streamlines of the mean

meridional flow. When the number of blades B— o, the equa-

tion reduces to

(25b)

af
am

The integration of equation (25) requires the specification of
an integration constant for f as

fst =f(rst’ Zs) (25d)

f; must be given along a line going from hub to shroud (not
coinciding with any of the streamlines). This specification is
called the blade stacking position (Tan et al., 1983).

2.5 The Kutta Condition. The Kutta condition ensures
smooth flow at a sharp trailing edge. This translates to the fact
that, in subsonic flow, the pressure must be continuous at the
trailing edge. Accordingly, the swirl schedule should be such
as to satisfy this condition. The homentropic assumption im-
plies that all the thermodynamic properties will be continuous
if either P or p or T is. Hence, by requiring that the enthalpy
jump across the blade trailing edge vanishes, the temperature
and hence pressure will all be continuous.

As the rothalpy is uniform, it follows that

v, =Wy/r (250)

H*—H-=0.5(W~ )2—0.5(W* )? 27a)

= - Wb['AW

Using the definition of W, and substituting for AW in terms
of the bound vorticity, and using the blade boundary condi-
tion (equation (25a)) we obtain

27

H* —H™ =W, vrVq (27b)

Journal of Turbomachinery

Fig. 3(a) Impeller blade original design

Fig. 3(b) Impeller blade modified design

so that the Kutta condition can be directly satisfied by setting
the right-hand side of the above equation to zero, i.e.,

Wb,-VI‘I_/9=0 (28)

It is worthy to note that, as the incidence angle at the blade
leading edge (LE) is assumed to be zero, the pressure there
should be continuous in a way similar to that at the TE.
Therefore, the condition of zero incidence at the blade LE im-
plies that rV,, should satisfy equation (28) at the LE as well.

3 Results and Discussion

In a radial impeller, the blade wrap should be as small as
possible for ease of manufacture as well as for mechanical
stress considerations; also, the pressure distribution on the
hub, the shroud, and the blade surfaces will determine, in a
viscous flow situation, the secondary flow motion and the ac-
companying losses.

In this section, we present preliminary results on the
parametric influence of a few design variables (e.g., the mean
swirl distribution, the number of blades, and their stacking
position) on the blade shape and the pressure field.

As mentioned earlier, the impeller hub and shroud profiles
form concentric circular arcs. Such a geometric configuration
is to be considered as hypothetical (as the ratio of cross-
sectional area at LE to that at TE is about 3); however, it still
serves the purpose of examining the parametric influence of
the few relevant design variables.

The results on the parametric influence of the r¥, distribu-
tion, the number of blades, and their stacking position are for
situations where the flow is further assumed to be incom-
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pressible. The effect of compressibility will be examined
separately,

In the following analysis, the variables are normaliZzed using
the radius and radial velocity at the blade LE, and the rotary
stagnation state (which is reached when the flow is decelerated
insentropically to a stagnation state in the relative frame) is
used as a reference state for the thermodynamic variables. The
relative dynamic head 0.5(p W?),; at the blade LE (based on a
mean line calculation) is used to normalize the pressure, so
that the reduced static pressure coefficient Cp may be defined
as

342/ Vol. 112, JULY 1990
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P* . p*
Cp=—r—r— (29)
P 0-5(pVV2)ref

The relevance of the reduced static pressure coefficient, as op-
posed to the static pressure coefficient, stems from the fact
that, in a viscous flow situation, the low-momentum fluid in
the boundary layer near the walls will tend to move from high
to low-pressure regions along the lines of maximum reduced
pressure gradient.

3.1 Effect of the Mean Swirl Schedule r¥y(r, z). To il-
lustrate how the swirl schedule may be tailored to control the
pressure distribution along the blade surfaces and, at the same
time, keep the blade wrap at an acceptable level, two designs
of a RIT impeller having 15 blades, with the stacking position
specified as f;, =0 along the midchord quasi-orthogonal line,
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but with a slightly different Vg distribution within the blade
region, are presented. These rV, distributions are chosen in
such a way that the overall change in rVy from the leading
edge to the trailing edge is the same, i.e., both impellers ac-
complish the same change in total pressure.

In these designs, the swirl schedule takes the following
form:

rVe(r, 2)=c;(R)(a(R) sin 28

+2 cos 2B)e~RE 4 ¢, (R) (30)

and
drVqy /3s=c;(R)e~“®8 sin 28

where ¢;(R)=c¢,(R)(@*(R)+4)/R, s=RB, and R and B are
shown in Fig. 1(a). The exponent a(R) allows for changing the
swirl schedule within the blade region and the constants ¢, and
¢, are calculated from the known values of ¥V, at the blade
LE and TE. In the original design, a(R)=1 throughout the
blade region, while in the modified one a(R) assumes the new
values 2.5 along the hub and 0.5 along the shroud, and a linear
variation in between. The original and modified Vg are given
in Fig. 2.

Figure 3 shows the original and modified impeller blades.
The modified blades are less wrapped than the original ones in
the streamwise direction and are almost straight in the span-
wise direction. Equation (25b) indicates that, when V,, is of
order one (which is the case in a good design), the blade
wrap/shape is primarily controlled by the mean swirl schedule
rVe. Consequently, it was possible to reduce the blade wrap
S(r, z) by reducing 1Wy/r| (through our choice of r¥Vy); the
latter is shown in Fig. 4 for both original and modified
designs.

The pressure field on the blade suction and pressure sur-

faces is studied by examining the mean pressure field and the
pressure jump across the blades. The variation in mean re-
duced static pressure coefficient Cp(=1— W? in incompressi-
ble flow) from the leading edge to the trailing edge for the
original and the modified designs is shown in Fig. 5. These
results may be interpreted in terms of the mean relative veloci-
ty W2 as follows: Fig. 6 shows that the absolute value of the
modified relative velocity is significantly reduced in the first
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half chord, and Fig. 7 shows that the modified ¥V, (particular-
ly along the hub) varies in a monotonic way compared to that
of the original design. This change in V,, is due to a decrease
in Qg resulting from the decreased blade wrap; the latter is
responsible for the change observed in the mean meridional
velocity V,, along the hub as it induces a relatively smaller
velocity there. The changes in the prescribed Wy and in V,,,
which is a result of modifying rV, are responsible for remov-
ing the region of adverse pressure gradient along the hub
surface.

The numerical results show that the jump in pressure coeffi-
cient ACp, given in Fig. 8, is primarily affected by the product
of the gradient of the mean swirl schedule along the mean
streamlines orVy/dm and Wy,; this agrees with equation (270)
where H is replaced by P/p in incompressible flow. In the
modified design, the point of maximum loading along the hub
is shifted upstream so as to avoid a region of adverse pressure
gradient present in the original design. The reduced static
pressure coefficient on the blade suction surface is given in
Fig. 9, which shows that the modified design has, to a large ex-
tent, eliminated a region of adverse pressure gradient along
the hub.

We can thus conclude from this rather simple example that,
by carefuly tailoring the ¥, distribution, one can control the
blade shape and the pressure distribution and hence the
resulting secondary flow.

3.2 Effect of the Number of Blades B. As B is decreased
while keeping all other parameters fixed, it is expected that the
load per blade would increase; this would lead to a subsequent
increase in the blade wrap and in the pressure jump across the
blades, which will be apparent from the following example.

The presence of a blade may be represented by a bound
vortex of strength I' (=2#rV,y/B). When rVy is fixed and B
decreases, T will increase so that the velocity induced by that
bound vortex would increase, thus resulting in a larger turning
angle, as shown in Fig. 10; these results also show the
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significance of the three-dimensional (blade-to-blade) effects
on the blade shape.

3.3 Effect of the Blade Stacking Position. The results in
Fig. 11 show that a change in the blade stacking position,
specified as f, =0 along three different quasi-orthogonal
lines, can result in a different blade shape f(r, z) (hence V),
thus the velocity and pressure fields will change as well. (Note,
however, that {, and Q, remain the same as rV, is the same.)

The numerical study that has so far been carried out shows
that the mean meridional velocity is sensitive to f,,. In the
original design, when the stacking position, specified as f;, =0,
is moved from the blade TE to midchord to 42.5 percent chord
(see Fig. 11 for the definition of stacking position) the mean
meridional velocity along the hub, shown in Fig. 12, ap-
proaches zero. This is due to the fact that, for this particular
stacking, Qg is such that the velocity induced by the bound
vorticity is so strong that it annihilates the oncoming flow
relative velocity at some point along the hub. This behavior
has also been reported by Tan et al. (1983) for the design
problem of an axial flow turbine.

3.4 Effect of Compressibility. A rudimentary study on
compressibility effects has been implemented. The results thus
obtained concur with those of Hawthorne and Tan (1987) in
that, for a given set of parameters, the wrap angle of the blade
decreases with increasing Mach number.

4 Conclusion

A design method for turbomachinery blading in three-
dimensional subsonic flow has been presented. It has been
used to carry out a parametric study of the response of the
blade shape, flow field, and pressure field to a few design
variables.

During the course of this study, it was found that the
resulting blade shape and pressure field are rather sensitive to
the changes in the prescribed mean swirl distribution. For a
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given change in mean swirl between the blades LE and TE, it
was possible to decrease the blade wrap by reducing [Wq/r 1.
The number of blades, when decreased, caused an increase in
blade wrap. On the other hand, the blade loading was shown
to be related to, and strongly affected by, the rate of change of
mean swirl along streamlines of the mean flow. The results
also indicate the significance of the blade stacking position.
The present study appears to indicate that one might be able
to tailor the mean swirl distribution to.control the blade shape
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and the pressure distribution and hence the secondary flow
motion,
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A Three-Dimensional Inverse
Method for Turbomachinery:
Part |—Theory

There are surprisingly few inverse methods described in the literature that are truly
three dimensional. Here, one such method is presented. This technique uses as input
a prescribed distribution of the mean swirl, i.e., radius times mean tangential velocity,
given throughout the meridional section of the machine. In the present implemen-
tation the flow is considered inviscid and incompressible and is assumed irrotational
at the inlet to the blade row. In order to evaluate the velocity field inside the
turbomachine, the blades (supposed infinitely thin) are replaced by sheets of vor-
ticity, whose strength is related to the specified mean swirl. Some advice on the
choice of a suitable mean swirl distribution is given. In order to assess the usefulness
of the present procedure, it was decided to apply it to the design of an impeller for
a low-speed radial-inflow turbine. The results of the tests are described in the second

J. E. Borges

Department of Mechanical Engineering,
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1096 Lisboa Codex, Portugal

part of this paper.

1 Introduction

In the field of turbomachinery there are two different ways
of viewing the problem of fluid dynamic calculations. In the
first instance, called the ‘‘direct’’ or ‘‘analysis’’ problem, we
seek to determine the flow field produced by a certain blade
shape. In the second way of treating the problem, called the
“inverse’’ or “‘design’’ problem, the emphasis is different since,
in this case, the effort is directed toward finding a suitable
blade geometry that will achieve certain conditions for the flow
field, given as input data.

The restriction of the inverse problem to two-dimensional
blade-to-blade cases has been tackled in many different ways.
Examples of such methods are provided by Lewis (1982) who
used surface vorticity for modeling the flow, Lighthill (1945)
who based his method on a conformal transformation, and
Garabedian and Korn (1976) who solved the equations in the
hodograph plane and used a method of characteristics in finite
difference form. Other instances are Schmidt (1980) who
worked with a streamfunction ¥ and a potential ® as inde-
pendent variables, while Sobieczky and Dulikravich (1982)
adapted a potential analysis program to the design of transonic
blades. Wang (1985) presented a solution based on the use of
a streamfunction concept and the artificial compressibility
technique. An inverse procedure based on a time-marching
method is described by Meauzé (1974). Novak and Haymann-
Haber (1983) used a fourth-order Taylor series expansion to
solve the flow equations. It is possible to fill pages with other
examples of two-dimensional blade-to-blade methods, such is
the wealth of existing methods in the open literature. However,
since our only intention is to give some brief examples, no
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further references will be presented for the two-dimensional
blade-to-blade case.

The solution of the indirect problem was also tried in the
hub-to-shroud plane and using a quasi-three-dimensional ap-
proach although the examples are fewer. Wright and Novak
(1960), Jansen and Kirschner (1974), and Weber and Mulloy
(1982) present examples of two-dimensional hub-to-shroud
methods. All of them are based on streamline curvature tech-
niques, and also have in common the fact that they use as
input data for the design procedure a specification of mean
swirl rVj (i.e., radius times mean tangential velocity) or quan-
tities that are closely related to the mean swirl (case of Jansen
and Kirschner, 1974, who impose the blade loading). There is
also very little work done on quasi-three-dimensional inverse
methods, and it is difficult to find an example that is char-
acteristic of this approach. One of the best instances is the
work described by Jennions and Stow (1984), although only
the blade-to-blade component of the software package de-
scribed in this paper can be considered as a truly inverse tech-
nique.

The next step in difficulty is given by truly three-dimensional
inverse techniques. Here, the scarcity of published methods is
even more marked than for hub-to-shroud and quasi-three-
dimensional solutions.

One of the few existing approaches to this subject is provided
by Tan et al. (1984), who developed a technique for the design
of annular cascades of infinitely thin blades with constant hub
and tip radius, The blades are modeled by surface vorticity
and the input to the program consisted of a specification of
mean swirl, 7V,. Dang and McCune (1984a) extended this ap-
proach to the case of rotational inlet flow through a linear
cascade. In this case, there is vorticity moving with the fluid,
in addition to the vorticity used to model the blades.

Recently, a totally different method was published by Zhao
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et al. (1985), who used a Taylor series expansion in the cir-
cumferential direction for the solution of the flow equations.
In spite of being a completely fresh form of treating the prob-
lem, this method also uses as input a sort of mean swirl (the
value of r¥V, at the mean streamsurface).

From this, necessarily brief, description of the work done
it is clear that, only recently, the three-dimensional approach
to the indirect problem started to receive some attention and
is being tackled. It is in this domain that the work described
in this paper will fit.

Why s there so little work done on this field? Well, it is
difficult to give a simplé answer without being controversial,
but nevertheless there is one point one should focus on when
trying to answer, In fact, in addition to the normal problems
associated with analysis procedures, in indirect techniques it
is essential to specify the input data carefully in order to avoid
ill-posed problems with no solution. For example, even in a
simple two-dimensional situation, it is impossible to specify at
the same time and independently the velocity on the whole
contour of the blade and the far-upstream and far-downstream
velocity. It is for this reason that it is necessary to impose
certain constraints to the initial specifications, a fact well known
by everybody working in this field (see, e.g., Lighthill, 1945;
note that these constraints involve an integral and so it is
difficult to know if they are satisfied a priori).

The way out of this difficulty is to specify the input data in
such a way that does not lead to ill-posed problems. This
approach is the one taken in most of the two-dimensional
indirect methods, for example, by specifying only the velocity
on the suction surface of the blade together with a suitable
thickness. Another input specification that does not require
complicated constraints is a specification of mean swirl r¥,
and blade thickness (see Dang and McCune, 1984b, who im-
plemented this sort of input in a two-dimensional situation).
This last design specification may seem rather odd at first sight,
but it is one of the specifications best suited to a truly three-
dimensional situation, since there are no complicated con-
straints to be imposed and since the value of rV, plays an
important physical role. In fact, this quantity gives the mean
angular momentum per unit mass and so is related to the way
the work is imparted to the fluid as it moves through the
machine. As the mean angular momentum can only be changed
by a tangential force, the way it varies along a streamline gives
us an idea of the variation of the pressure loading across the
blades. The importance of the mean swirl is so marked and
the desirability of using it for three-dimensional inverse meth-
ods so clear, that the most recent attempts at the solution of
the three-dimensional problem (Tan et al., 1984; Dang and
McCune, 1984a; Zhao et al., 1984) use as input a specification

of mean swirl. This sort of specification was also adopted in
the present work. _

The use of a mean swirl distribution, rVj, has other advan-
tages, namely the simple kinematic relationship existing be-
tween its value and the vorticity bound to the blades. This
relationship plays a central part in the procedure described
herein. In fact, the basic idea of this design method consists
in replacing the action of the blades. by sheets of vorticity (it
is this vorticity that causes the jump in velocity when one goes
from the suction surface to the pressure surface). The strength
of this vorticity is related to the specified values of r¥, through
an expréssion also involving the blade coordinates. The knowl-
edge of the vorticity present in the flow region permits us to
calculate the corresponding velocity field, which is done, in
our case, using the Clebsch formulation. Afterward, the blade
shape is determined by requiring it to be aligned with the local
velocity vector throughout its length. Since the vorticity also
depends on the blade shape it is necessary to solve the problem
iteratively.

This idea is the same as the one described by Tan et al.
(1984). However, the method described by Tan et al. (1984)
was applied only to annular cascades of constant tip and hub
radius and with a specification of mean swirl that was only a
function of the axial distance. In the present study we consider
the extension of this method to radial turbomachinery with an
arbitrary meridional geometry (see Fig. 1) and a general rV,
distribution, which can vary both with r and z. In order to be
able to deal with these extensions, the numerical techniques
used to solve the equations must be different from those used
by Tan et al. (1984).

As an example of a possible application, the design of a
rotor of a radial-inflow turbine will be presented and discussed
in detail in the last section of this paper.

2 Description of Design Method

The following method uses the usual right-handed cylindrical
polar coordinate system defined by (r, 0, 2), where r is the
radius, § the angular coordinate, and z the axial distance. In
addition, an auxiliary coordinate o will be introduced, defined
by

a=9—f(r, 2) H

where f (r, z) is the angular coordinate of a point on the blade
camber surface. Some manufacturers of radial-inflow turbines
call f the wrap angle and that convention will be adopted here,
for brevity’s sake. The variable « can be interpreted as a sort
of helical angular coordinate; for values of « given by a =
2mw/B,m = ..., —1,0,1,2,...theequation of the blade
surface is obtained (the blade surfaces are coincident with the

Nomenclature
B = number of blades at the blade; see equation -Subscripts
C, = pressure coefficient; see an bl = referring to blade
equation (19) W = relative velocity k = kth harmonic
f = angular coordinate of blade z = axial coordinate r = in the radial direction
surface (wrap angle), rad o = auxiliary coordinate; see ref = reference value
k, m = integers equation (1) tip = tip of impeller
N = number of harmonics used 8, = periodic delta function z = in the axial direction
p = static pressure 7 = coordinate in the trans- § = in the tangential direction
r = radius formed domain 0 = mean value
rVy, = mean swirl 6 = angular coordinate
s = coordinate along the stream- ¢ = coordinate in the trans- Superscripts
line formed domain ¢ = cosine harmonic
S = saw-tooth function p = density s = sine harmonic
U = blade speed & = potential + = upper surface of blade
V = absolute velocity ¥ = streamfunction (facing positive )
V, = mean tangential velocity w = rotational speed — = lower surface of blade
vgp = periodic tangential velocity Q = vorticity - (facing negative 6)
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L

TRAILING EDGE

Fig. 1 Grid in physical plane

blade camber surface because it is supposed that the blades
have zero thickness). In the following, vectors will be denoted
by bold characters and mean values will be indicated with an
overbar.

2.1 Calculation of the Velocity Field. Since in the present
method the velocity will be calculated from the knowledge of
the vorticity, the first piece of information to be discussed is
the strength and location of all the vorticity existing in the
flow field, which will be done immediately. It will be assumed
that the flow is inviscid and irrotational at inlet to the tur-
bomachine. In addition, our attention will be focused only on
designs that impose constant work along the span, because
this presents some advantages, as will be discussed later on.
For these conditions and according to Kelvin’s theorem, the
flow is everywhere irrotational. So, if there is any vorticity at
all, it must be bound to the blade surfaces. This implies that
the expression for the vorticity vector must have a dependence
on the angular coordinate given by the periodic delta function,
8,. Moreover, it is known that the vorticity field is solenoidal,
or V+Q = 0, and therefore can be written as the cross product
of two gradients of scalar functions. One of the factors in this
product may be ¥V« because the vorticity is lying on the blade
surface and therefore is normal to V«. The other factor turns
out to be VrV, as is shown in more detail by Tan et al. (1984)
or Borges (1986). Therefore, the final expression for the vor-
ticity vector is

Q=[VrVpx Vald (@) @

where the Fourier expansion of the periodic delta function is
given by

8() =1+ Y 2cos(kBa) 3)

k=1

Now that all the vorticity existing in the flow field is known,
the velocity induced by this vorticity can be evaluated. In order
to do that the Clebsch formulation of the problem will be used.
This basically consists in writing the velocity in such a form
that it satisfies identically the vorticity expression (2). The
adopted expression must depend on an unknown scalar func-
tion ®, which is then evaluated by satisfying the continuity
equation.

Executing the first step of the above idea, the velocity will
be written as
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V=var, 0, z) +rVsva-S(a)VrV, (4a)
inside the blade region and as

V=v(, 0, 2) (4d)
outside it. The function S(«) is such that the curl of the above
expression (4) must be equal to the vorticity as calculated from
expression (2). So, taking the curl of (4) we obtain

Q=[V xV]=[§'(a) +1]VIV,x Va 5)

and the only way for equation (5) to be equal to equation (2)
is to have

c S (a)=6,(a) -1 ©)

or, in other words, S(«) must be the periodic sawtooth function
with zero mean value. Notice that what we have done so far
is to determine the unknown function S(«) using one of the
conditions that expression (4) must satisfy. For the calculation
of the unknown scalar function ®(r, 8, z) we are going to use
the other condition left, i.e., the continuity equation. For in-
compressible flow, the continuity equation takes the form

VV=0 )]
Substituting the value (4) for the velocity V, we arrive at
V%= —rVyVia+[S' (o) + 1] Vas VrVy+S(a) ViV,
(8a)
inside the blade passage and
v2®=0

upstream and downstream of the blade row.

In order to solve this equation in ®, we are going to expand
both & and the right-hand side of equation (8) in a Fourier
series in the tangential direction. The corresponding harmonics
must be equal, which gives us a second-order differential equa-
tion for each of the harmonics of ®. For example, for the
mean value of &, §, (r, z), it is necessary to solve

8b)

e, 109, &d, 1398 - af a - af
+ = ——fe S Ll ==
o2 e T oz ror | Var) Yoz |0
(9a)
inside the blade passage, and outside it
e, 100, 3%,
- =0 9b
2 0z% ©b)

which is a Poisson equation. For the kth cosine harmonic, the
equation to solve is

9% L 1o P KB &
R
- 2sin(kB -
= — [V¥V) % + [VaeVri)2cos(kBf)  (10a)
inside the blade passage;
Fe, 1 9% %P k*B?
Cp -y = - - #=0 (100)

6r2+r6r+6z2_ r?
outside the bladed region. Similarly, for the kth sine harmonic
it is required to solve

= [V¥V,] %%@ + [Vae VrV2sin(kBf) (11a)
inside the blade passage;

outside the blade passage.
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Equations (10) and (11) are Helmholtz-type equations which,
like equation (9), can be solved in the meridional section of
the blade row provided use is made of the appropriate bound-
ary conditions at the endwalls and far-upstream and far-down-
stream boundaries. At the endwalls, the condition of no flow
is used, and at the far-upstream and far-downstream boundary,
uniform flow is imposed (see Borges, 1986).

In order to calculate the pressure loading on the blades, it
is necessary to estimate the jump in velocity across the blade
(W* —W7). Tan et al. (1984) and Borges (1986) show that this
jump is given by

2r (VrVpX Vo)X Vo
B VasVa

WH—W- = (12)

This expression is physically plausible as it gives a jump in
velocity that lies on the blade (since it is normal to Ve, a
vector normal to the blade) and is also normal to the vorticity

2 _ . . .
vector, —g (VrVy X Vaj, which is causing the jump. The pres-

sure loading on the blades can be determined if we assume
irrotational flow and use Bernoulli’s equation. The final
expression is (see Tan et al., 1984, and Borges, 1986):

2 -
P =D = X oWyevrV, (13)

B
where p is the density of the fluid and p* and p~ are, re-
spectively, the static pressures on the upper and lower surfaces
of the blade.
Asis well known, the Kutta-Joukowski condition states that
at the trailing edge of a blade, p* = p~. Using equation (13),
this implies that

Wpe VrVy=0 (14)

or, in other words, the component of the gradient of ¥, along
the meridional projection of the blade streamline must be zero.
This is logical, since downstream of a blade row the mean
angular momentum per unit mass (rVy) cannot change because
there are no tangential forces actuating there. The same can
be said at the trailing edge since the Kutta-Joukowski condition
imposes zero tangential pressure loading there, as well.

In the method described here, this condition is satisfied by
specifying an ¥, distribution with zero gradient at the trailing
edge, thus automatically satisfying condition (14). A similar
condition is also imposed at the leading edge. This corresponds
to designing a blade row that is exactly aligned with the local
velocity vector at the leading edge (zero local incidence angle)
so that the tangential loading there is zero.

2.2 Calculation of Blade Camber. The blade shape is cal-
culated using the condition that the blade must be aligned with
the local velocity vector. This can be expressed as

WyeVa=0 (15)

by noting again that Vv « is a vector normal to the blade camber
surface. Expanding equation (15), we arrive at

a a W,
f+ Vrbll— Pou

16
li4 ar r (16)

Vzbl

where f is the wrap angle and the blade relative tangential.

velocity, Wy, is defined as equal to

Wop= Vg + vgp— or n

Here w is the rotational speed of the blade row and vy, is the
value of the periodic tangential velocity at the blade (difference
between the tangential velocity at the blade and the mean
tangential velocity ¥V, specified as input).

The blade boundary condition (as equation (16) w111 be called

Journal of Turbomachinery

from now on) is a first-order partial differential equation with
characteristic lines coincident with the meridional projection
of the blade streamlines. In order to integrate this differential
equation, some inifial data (values of f) must be specified along
a line roughly perpendicular to these characteristic lines and
extending from hub to shroud. These initial data on f will be
called the stacking condition of the blade. In our method this
stacking condition is implemented by giving as input the values
of blade wrap angle f along a quasi-orthogonal, for example,
at the leading edge. After the stacking condition is specified,
we can integrate equation (16), since all the velocities that
appear in it are known from the previous iteration by using
the equations described in the last subsection.

2.3 Numerical Procedure. The design method described
here requires the solution of partial differential equations like
9), (10), (11), and (16) on the meridional section of the ma-
chine. For a radial turbomachine, the meridional section has
a complicated geometry with curved endwalls. For this reason,
it was decided to do a transformation of coordinates from (r,
z) to a body-fitted curvilinear coordinate system (¢, 7). A
discussion of this technique and some examples of its practical
application to the solution of partial differential equations can
be found from Thompson et al. (1977). Ideally, this coordinate
system should be easy to generate and require little compu-
tational time. For this reason it was decided to use an algebraic
transformation with the points equally distributed along quasi-
orthogonals, extending from hub to shroud (see Borges, 1986).
Since the transformation is always the same for all the partial
differential equations to be solved, it is only necessary to cal-
culate it once, at the very beginning of the process. It is rec-
ognized that the use of an algebraic transformation of
coordinates may lead to a grid that is nonorthogonal in the
physical plane (see Fig. 1), but this fact is taken into account
when doing the transformation.

The equations obtained from (9), (10), and (11) after the
transformation (see appendix) are solved using finite difference
techniques. Second-order accurate, central difference formulae
and a nine-point numerical molecule are used throughout. In
our program this was implemented in conjunction with a mul-
tigrid technique in order to accelerate the convergence rate of
the solution. A good description of multigrid methods can be
found in Brandt (1977), the relaxation subroutines used in our
program being a slightly modified version of the ones presented
there.

The multigrid method discretizes the problem on several
grids, which become increasingly coarser as one moves from
one grid level to the next. The desired solution is the one
obtained in the finer mesh, because the truncation errors are
smaller at this level. The coarser meshes are used to accelerate
the convergence of the solution by efficiently eliminating the
low-frequency (long-wavelength) errors in the solution. As the
solution on the coarser grids requires much less work than in
the finest grid, the attenuation of low-frequency errors is done
very cheaply. The highest frequency errors are also liquidated
inexpensively because their wavelength is of the same order as
the mesh size and therefore the information about changes
only has to travel a few mesh nodes.

The blade boundary condition (16) (see appendix for the
form it takes in the transformed domain) will also be solved
using finite-difference techniques. However, since it is a first-
order differential equation, it must be solved using a different
numerical scheme that respects the direction of the character-
istic lines. For this reason it was decided to solve the blade
boundary condition using an Euler’s modified method (see
Roache, 1982). This is an implicit numerical scheme that has
a truncation error of second order in A¢{ and Az and is con-
sistent and stable. In order to start this method the values of
wrap angle f must be known along an initial quasi-orthogonal.
This information is provided by the stacking condition.
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The calculations must be done iteratively since the vorticity
depends on the blade shape, which is not known at the start.
So, after the input of the initial data and generation of the
body-fitted curvilinear coordinate system, a first estimate for
the blade shape f'is obtained, assuming that the blade velocity
is equal to the value one would have if the velocity profile was
uniform along a quasi-orthogonal. Then, an iterative loop is
entered, where the blade velocity is calculated (this step requires
the solution of equations (9), (10) and (11)), followed by the
calculation of the blade shape f (this step requires the solution
of equation (16)). After convergence is achieved, the blade
shape is output. For further information on the numerical
procedure see Borges (1986).

3 Results

The inverse method just presented is fully three-dimensional.
Therefore, the most appropriate way of really testing it is by
using it to design a blade row with significant three-dimensional
effects. For this reason, it was decided to apply this method
to the design of a low-speed rotor (with 17 blades) of a radial-
inflow turbine. We considered a low-speed rotor because the
developed indirect method only applies to incompressible flow,
as yet.

For the application of the procedure, a grid consisting of
145 quasi-orthogonals and 49 quasi-streamlines was fitted to
the meridional section of the radial-inflow turbine, the ge-
ometry of this meridional section being treated as an input to
the program. Every other line of the grid used is shown in Fig.
1. The leading and trailing edges of the blade row are also
indicated in the figure, in order to demonstrate that, in the
solution to be described, a region upstream and downstream
of the blade row was considered, there being 81 quasi-or-
thogonals inside the blade region. In the Fourier expansion
for the velocity, 15 harmonics were considered, each harmonic
having one sine and one cosine component.

The other fundamental input for the present inverse method
is a mean-swirl distribution, specified throughout the entire
meridional projection of the blade row. In the following we
will explain, in detail, how this input was chosen, because this
is one of the first instances of the use of such design specifi-
cation. B

The necessary values of rVy along the leading and trailing
edges are determined during the preliminary one-dimensional
design stage through a consideration of the amount of energy
per unit mass of fluid that is to be exchanged in the blade row
as a whole. These values must be taken as constant along the
leading and trailing edges, since this gives a blade that produces
constant work along the span and this has the advantage of
not introducing trailing vorticity into the exit flow. In the
present example, the value of r¥, was considered equal to rV,

= 0. 882<.ort2lp at inlet, and at exit, a zero value of swirl was
lmposed At the trailing edge the derivative of rVg along the
quasi-streamlines was taken as equal to zero (8rV,/9¢ =0) be-
cause that was necessary in order to satisfy the Kutta-Jou-
kowski condition. At the leading edge a similar restraint was
imposed on the derivative of rVy for the reasons discussed
above. _

Now the problem of choosing an ¥} distribution reduces
to the fitting of a smooth variation of rVj, between these initial
and final values of rV, and its derivatives. There are mainly
two types of arguments that must be considered during this
task. One concerns the evolution of the loading throughout
the machine, and the other is related to the amount of twist
of the blades, which must be kept within reasonable limits for
manufacturing and stress reasons.

According to equation (13), the blade loading (difference in
pressure between suction and pressure surfaces) is proportional
to the product of the modulus cf the relative velocity and the

value of the derivative of r¥; along the meridional projection -

of the blade streamline, or
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pT-p = Eplwbll e (18)

where s is distance along the meridional projection of the blade
streamline. This means that the pressure loading is essentially

- determined by the absolute value of |W,,| and 8rV,/ds. The

first term should vary smoothly from inlet to outlet in a ma-
chine well designed. So, the variation in |W,,| is not going to
affect the overall evolution of the pressure loading signifi-
cantly. Therefore, we can conclude that the pressure loading
will roughly follow the value of the derivative of rVj along the
streamlines. In addition, in a well-designed machine, the di-
rection of the streamlines should be approximately the same
as the direction of the quasi-streamlines. This implies that in
the above argument, it is reasonable to substitute the derivative
of rV, along the streamlines by the value of the derivative
along the quasi-streamline (drV,/3£), and say that the evolution
of the pressure loading will follow roughly the shape of the
derivative of rV, along the quasi-streamlines. This fact provides
us with some control over the pressure loading on the blade
surfaces since the derivative of rV, along the quasi-streamlines
can be evaluated from the input and, so, is known from the
start. For example, if it is desired to design a blade with a big
loading near the leading edge, then the derivatives of the rV,
distribution along the quasi-streamlines should have large val-
ues near the leading edge.

Since the most heavily loaded streamsurface in the rotor of
a radial-inflow turbine is the shroud, the behavior of the de-
rivatives of r¥, should be watched with special care there,
specifying an rV, distribution with a smooth first derivative.

In addition to providing some control over the pressure
distribution on the blade surfaces, the specification of »Vj also
gives some control over the amount of blade twist. That is
important, since for stress considerations and for ease of man-
ufacture it is convenient to avoid a highly twisted blade; see,
e.g., Jansen and Kirschner (1974). To see how this control
comes about, let us take a fresh look at equation (16). This
equation implies that the variation in wrap angle along a
streamline is proportional to the integral of the blade tangential
relative velocity divided by r and the meridional blade velocity,
or (Vg + vgp— wr)/ (rV,.;»») (see equation (17)). We do not have
any control over the periodic blade tangential velocity vg,, since
it is a result of the calculations. However, it should be rec-
ognized that this term is an order of magnitude smaller than
the other two components on the right-hand side of (17), in
regions where the flow is well guided. In fact, if the velocity
profile in the tangential direction presented a linear variation
between the suction and the pressure surfaces, the value of vy,
would be zero and the blade tangential relative velocity would
be coincident with the mean tangential relative velocity. Since
for a radial-inflow turbine the flow can be considered as well
guided for most of the flow path, it follows that the term vy,
can safely be neglected in this argument. Thus, it can be con-
cluded that the variation in wrap angle along a streamline is
approximately proportional to the integral of the mean tan-
gential relative velocity. In other words, if it is desired to avoid
large variations in wrap angle, it is necessary to keep the value
of Wy as low as possible by i imposing an rV, distribution ob-
tained considering a value for Vj that follows closely the local
value of the blade speed wr. The fact that in the above integral
the radius » and the meridional blade velocity appear in the
denominator, means that it is more important to keep the mean
tangential relative velocity, Wy, small where the radius and the
meridional blade velocity are small. So, from the point of view
of highly twisted blades, the most critical streamsurface is the
hub, not only because there the radius and meridional blade
velocity take the lowest values, but also because the meridional
flow path is usually much longer along the hub than anywhere
else in the machine. For this reason it is advisable to specify
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at hub an rVg distribution that gives a mean tangential absolute
velocity, V,, similar to the local value of wr.

The final distribution of r¥; chosen for a particular design
is in general a tradeoff between these two conflicting require-
ments. As already mentioned, at the shroud, preference should
be given to the pressure distribution on the blade surfaces, and
at the hub, the principal objective should be to avoid a large
variation of wrap angle. Usually this compromise results in a
blade that is heavily loaded at the hub inlet, while at the shroud
most of the load is concentrated near the trailing edge.
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Fig. 6 Derivatives of the input mean swirl distribution

The present application is no exception to this. In Fig. 2,
the chosen rVj; distribution on hub and shroud is plotted as a
function of percent meridional distance (here and in the fol-
lowing, flow properties will be nondimensionalized using the
tip radius and tip blade speed, unless otherwise stated). Figure
3 is a graph of the specified value of ¥, at hub compared with
the local blade speed wr. This figure shows that at the hub it
was necessary to impose a value of V, that followed closely
the curve of wr in order to avoid a highly twisted blade. The
same does not apply to the shroud, as the next plot, Fig. 4,
clearly demonstrates. The next figure, Fig. 5, shows contours
of the rV, distribution used, and, as can be seen, the imposed
variation is smooth everywhere. Finally in Fig. 6 the values of
the derivatives of the swirl distribution in the direction of the
quasi-streamlines are presented. Notice the smooth and mon-
otonic variation of the derivative of ¥, at shroud, At the hub,
that variation is not monotonic and is less smooth because at
the hub the rV, distribution was chosen with the main objective
of keeping the variation of wrap angle as low as possible.

The program developed was run using these input data, and
the blade shape was obtained as output. Figure 7 is a plot of
the contours of wrap angle f, on the meridional section of the
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turbine. From it, it is possible to conclude that the maximum
variation of wrap angle is not excessive and is less than two
blade pitches. Notice that the resulting blade shape has double
curvature and so, it would be very difficult, if not impossible,
for a designer to guess such a blade shape. Therefore it is
unlikely that this design could ever be reached by an approach
of the sort of “‘cut and try.”’ This fact illustrates one of the
advantages of the present indirect technique.

The output of the program also includes the pressure dis-
tribution on the blade surfaces, which is presented in the next
plot, Fig. 8. The definition of the pressure coefficient used in

this plot is
w 2
c =[ } .
” Wref

where W, was taken as the relative velocity at the intersection
of the leading edge with hub (for the present case W,; =
0‘278wrﬁp).

The pressure distribution, shown in Fig. 8, has a reasonable
shape throughout, except at the shroud, where it presents a
dip in the region near the trailing edge. This dip is caused by

(19
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Fig. 9 Contours of pressure coefficient C, on suction surface

a change of radius of curvature of the shroud profile in the
meridional plane (this point corresponds to the intersection of
a circular arc and a straight line in the meridional section of
the turbine). As this dip is connected with the meridional shape
of the turbine, it would be difficult to specify an rVj distri-
bution that would avoid it. Therefore, this pressure distribution
and the associated mean swirl distribution were accepted. The
next plot, Fig. 9, gives the contours of pressure coefficient,
C,, on the suction surface of the blade. As can be seen, the
pressure is smooth on the main part of the blade, there being
a rapid variation near the trailing edge that is due to the nec-
essary rapid unloading existent there.

It is illuminating to compare the plot of the pressure dis-
tribution, Fig. 8, with Fig. 6, giving the derivatives of r¥;. It
is seen that the trends of both the blade loading (difference in
pressure between suction and pressure surface) and the curves
of the rV; derivatives are the same, which bears out the com-
ments made previously. In fact, notice that the regions where
the rV, derivatives are larger (in modulus) correspond to re-
gions in the C, plot with large values for the pressure loading
(at the hub the pressure loading and the rV; derivative are
larger near the leading edge, while at shroud the opposite
happens).

It should be stressed once more that it is not pretended that
the present design has an ideal pressure distribution. In fact,
the pressure distribution could be improved by a convenient
alteration of the meridional section and the rV, distribution.
This route was not pursued further since the meridional section
of the turbine was fixed (it was intended to compare this design
with an existing machine). Nevertheless, it is recognized that
this particular point needs a lot more research work and that
the definition of the best rV, distribution for a given meridional
section is a desirable extension of the present work.

Another desirable extension of the present work is the in-
clusion of thickness in the present design program. Neverthe-
less, it is possible to estimate some of the consequences of the
introduction of thickness, namely the effects of blockage in-
troduced into the flow field. This added blockage will increase
the blade meridional velocity and consequently, the total ve-
locity. This fact implies that the pressure coefficient will take
higher values than those indicated in Figs. 8 and 9, the dif-
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ference being bigger where the relative blade blockage is higher,
which occurs in the last half of the flowpath near the hub.
Therefore, the change in the pressure coefficient at the shroud
will be small, and at the hub, the biggest difference will be a
reduction in the steepness of the adverse pressure gradient
existing there (see Fig. 8). In what concerns the blade shape,
the effect of blockage will be a reduction in the total amount
of wrap angle variation. This is so because the blade meridional
velocity will be increased, thus reducing the value of the integral
that gives the variation of wrap angle (see the above discussion
on the control over blade twist). This effect is more marked
near the hub, which is the most critical streamsurface from
the point of view of highly twisted blades. So, it can be con-
cluded that the effect of blockage will ease the difficulties
linked with the total amount of blade twist.

4 Conclusions

The present study was motivated by the need for a three-
dimensional inverse method. As shown, this is a virtually unex-
plored field at the present, in spite of the fact that a three-
dimensional indirect method is an essential tool for the design
of blade rows with significant three-dimensional effects such
as rotors for radial turbomachinery.

One such possible three-dimensional inverse method has been
successfully developed and is described here. This inverse
method was applied to the design of a radial-inflow turbine
rotor with the intention of testing the program with a difficult
test case and so assessing its usefulness. As far as the author
is aware, this is one of the first examples of the design of a
rotor for a radial-inflow turbine using a fully three-dimensional
inverse method.

The present indirect method uses as design specification an
imposition of mean swirl (rV}) given throughout the meridional
section of the turbomachine, and some advice on how to choose
this specification was included here. It was shown that the
pressure loading on the blades is directly connected to the
derivatives of the imposed r V. On the other hand, the integral
of the difference between the specified value of V, and the
local blade speed (i.e., the mean relative tangential velocity)
is closely linked with the amount of blade twist, a fact that
provides us with some control over the variation of wrap angle.
This advice was put into practice in the example described
here. It was demonstrated that it is possible to obtain a final
design with a reasonable pressure distribution on the blade
surfaces while keeping the total amount of blade twist within
acceptable limits.

Based on the work done, we strongly advise the use of three-
dimensional inverse programs to assist in the design of tur-
bomachines with significant three-dimensional effects.
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APPENDIX
The generation of the numerical grid gives us a relation of
the form
r=r(£: 7))
z=z(% 1)

where (r, z) are the coordinates in the physical domain and (¢,
1) are the coordinates in the numerical plane. Then, in this
numerical plane, equation (10) takes the form

- J:
6(I>§E - ZBCI’ETI + 'Yq)gn + ‘I’f—' [M - —Eﬂ:l

20

J r
= —[V¥V,] 2“%% + [VasVrVy2cos(kBf) (21)
and equation (11) transforms into
53, — 268}, + 78, + B [@P—y;—”rﬂ‘ _ iﬂ
=[v¥V] @gﬁfl + [Va VrVs2sin(kBf)  (22)
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with the transformation parameters used in these equations
defined as

J =z =z

6 =z2+72

B =z, +rery

y =2+t

Dx=8z¢¢ — 2B2¢n + Y2
Dy =0rge —2Brg, +yry,

and where a subscript denotes differentiation with respect to
that variable.

The mean flow can be solved using the potential or the
streamfunction concept, both approaches being equivalent.
Although in the main text the equation for the potential was
presented (equation (9)), in the program preference was given
to the equation using the streamfunction concept (see Borges,
1986). So, in the transformed plane, the equation to be solved
for the mean flow is

5V — 28W 5 + Y ¥+ ¥y [ﬂ;ﬁgﬁ + Lf—’l]

reDx—z:Dy  Jz - -
wn[f—f— - TE] =~ (rVe), =1, (Vo)

29
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23) -

The blade boundary condition (equation (16)), used to up-
date the blade shape f, is transformed into

”70 Vopi
—

WVe+ vgdfe + 1V, + v =7 { 2 w] (25)

with Vg, V,, vgp,Uppnand vgy calculated with the help of the
following formulae:

- Iy,
AL (26)
r
- J¥
Vv, =~ T‘f @n

N N
Vew= Y [095— B cos(kBS) + Y, [68} - B®}] sin(kBf)
k=1

k=1

(28)
N N
Vo= 3, [085— BB cos(kBf) + ), [695— B®}] sin(kB/)
k=1 k=1
(29)
N N
IED D k_rli scos(kBf) + ¥, Krg ®sin(kBf)  (30)
k=1 k=1

Note that in equations (28) and (29) we omitted the subscript
k from & for clarity’s sake.
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A Three-Dimensional Inverse
Method for Turbomachinery:
Part Il—Experimental Verification

The performance of an impeller of a low-speed radial-infiow furbine, designed using
a three-dimensional inverse technique, was evaluated experimentally. This per-
Sformance was compared with that achieved by a rotor typical of the present
technology. Besides measuring overall quantities, in special efficiency, some
traverses of flow velocity were carried out. The results of the tests showed that the
new design had a peak total-to-static efficiency 1.4 points better than the conven-
tional build. The traverses indicated that the level of swirl at exhaust of the new im-
peller was only half as big as that for the conventional rotor, in spite of the fact that
both impellers were designed to have zero swirl at outlet. It is also shown that the
rotor loss for the new impeller is considerably lower than for the conventional
wheel. This research points to the desirability of using a three-dimensional inverse
method for the design of turbomachines with significant three-dimensional flows.

J. E. Borges

Department of Mechanical Engineering,
Instituto Superior Técnico,
1096 Lisboa Codex, Portugal

1 Introduction

In Part I (Borges, 1990), a three-dimensional inverse
method was described that used as design specification a mean
swirl (radius times mean tangential velocity, r¥,) distribution
given throughout the meridional section of the blade row. This
method can be applied to turbomachines with an arbitrary
meridional section and any amount of fluid deflection. The
application of this indirect technique to the design of a rotor
for a radial-inflow turbine was also discussed in that paper.
This particular kind of turbomachine was chosen because it is
a machine with significant three-dimensional flows, therefore
providing a good test case of the developed program.

The rotor designed using this inverse technique was built
and tested. It is the objective of the present paper to describe
the experimental results obtained. The experimental program
consisted of the comparison of the overall performance of the
new rotor, designed using the described inverse method, with
that given by a rotor designed using methods typical of the
present state of the art. By doing this comparison, a simple
and accurate assessment of the usefulness of the developed in-
verse method can be done.

The tests were done using a large-scale, low-speed model of
a radial-inflow turbine. This means that the velocities were
kept at a low level, leading to incompressible flow, one of the
conditions of applicability of the inverse method described.
The large dimensions also had the additional bonus of permit-
ting good accuracy for the measurements to be made. In addi-
tion to the measurement of the overall performance, some
detailed flow measurements were made with the intention of

Contributed by the International Gas Turbine Institute and presented at the
34th International Gas Turbine and Aeroengine Congress and Exhibition,
Toronto, Ontario, Canada, June 4-8, 1989, Manuscript received at ASME
Headquarters January 23, 1989. Paper No. 89-GT-137.
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clarifying the differences observed in the overall performance
of both rotors.

2 Experimental Apparatus and Geometry of Rotors

The layout of the test rig is presented in Fig. 1. Air is sucked
through a bellmouth into the turbine directly from the at-
mosphere. Then it moves radially through section A, where
the volume flow passing through the turbine is evaluated by
measuring the local static pressure relative to atmospheric.
This is followed by the stator (formed by 31 blades with a
chord of 64 mm) which deflect the air flow to a direction
almost tangential (making a design angle of 74 deg with the
radius). Some measurements of the velocity field were made at
station B, in the interspace between rotor and stator. Follow-
ing the stator comes the rotor, where the energy is extracted
from the air flow. After the rotor, the air enters the outlet
duct. The initial length (around 400 mm) of this exit duct has
the shape of an annular duct, which was achieved by introduc-
ing a center body fixed to the external duct by a series of
struts. It was decided to put the center body into the exit duct
to avoid a sudden expansion in the flow path. This abrupt ex-
pansion would lead to a separation and a very complicated
three-dimensional flow, which would be very difficult to
measure and analyze accurately, Downstream of the rotor,
provision was made for the measurement of the static pressure
at the station marked C in Fig. 1. There were three pressure
tappings equally spaced circumferentially on the center body
and another three equally spaced pressure tappings on the ex-
ternal duct. The three tappings on the center body were inter-
connected and the same was done for the tappings on the outer
diameter. The pressure indicated by these two groups of tap-
pings was measured separately. The value of downstream
static pressure used in the calculation of the overall per-
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formance was the average of the center body and outer
diameter pressures. This was done because, as is well known,
at exit from a radial-inflow turbine the static pressure is not
uniform radially, even for peak efficiency conditions (see Kof-
skey and Wasserbauer, 1966; Kofskey and Nusbaum, 1972;
and Sasaki et al., 1977).

It was also possible to make a radial traverse for the
measurement of velocity field and total pressure, using a
three-hole probe, at this same station C. Following this station
was a section of annular duct filled with a honeycomb, which
had the function of extracting any swirl present at the outlet of
the rotor. The end of the outlet duct was connected to a flexi-
ble hose that led the air flow into a radial fan, which sucked
the air through the turbine.

The work done by the turbine was absorbed by a d-c electric
motor-generator. The stator frame of this generator was
cradle-mounted, allowing the measurement of the torque with
the help of a torque arm (see Fig. 1). As the rotor of the tur-
bine was mounted directly onto the shaft of the generator, the
rotational speed was measured using an optical pickup placed
on the center body, point F (Fig. 1). Care was taken in order to
avoid leaks of air into the flow path. For example, the
generator was enclosed in a cylindrical box sealed from the at-
mosphere at the point furthest removed from the tur-
bine—point E in Fig. 1.

Since we are going to compare the performance of both im-
pellers quantitatively, it is important to discuss the error in-
volved in the measurements of the overall performance in
order to make sure that any differences present are significant
and not due to experimental errors. Borges (1986) presents an
estimate for the errors involved in the different physical quan-
tities and concludes that the maximum relative error in each

T /‘}\ N ey JL N
STATION C
| STATION A FLEXIBLE
HOSE

Layout of rig

individual measurement of efficiency is 2.5 percent (to this
value corresponds a probable error of 1.3 percent). This level
of relative errors is typical of what can be achieved when
testing small power radial-inflow turbines, judging by other
examples and estimates presented in the open literature (see,
for example, Futral et al., 1969). As the expected differences
between the rotors were small, it was important to make the
influence of the experimental errors as small as possible and to
quantify their effect accurately. So, in order to minimize the
deleterious effects of these experimental errors, the curve of
efficiency was calculated using a large number of points as will
be shown later on. In this way, a clear idea of the scatter
present in the data will be obtained.

In what follows, we will also report the results of some
traverses made with a three-hole probe used in the null-yaw
mode and mounted in a manually driven traverse gear. This
three-hole probe was calibrated against a standard pitot tube
in a separate low-speed wind tunnel, for the same range of
speeds likely to be found in the tests. Based on the results of
the calibrations, it is estimated that the maximum error in the
measurement of velocity is 1 percent and in the velocity direc-
tion is 1.5 deg. For points near the endwalls (within a distance
of about 2.2 mm) the errors involved in the measurements of
velocity and flow angle may be bigger than those just men-
tioned due to wall proximity effects (the experimental data
were not corrected for this effect). The estimated error in the
positioning of the probe is 0.5 mm in the radial direction. For
further information on the test rig and the three hole probe see
Borges (1986).

The radial-inflow turbine tested in the above rig was de-
signed so that it is typical of small gas turbine practice. The
specific speed defined as

Nomenclature
D = tip diameter of rotor . Subscripts
f = angular coordinate of blade Re = Reynolds number 0 = stagnation value
surface (wrap angle), deg U = blade speed tip = tip of impeller
N, = specific speed (nondimen- V = absolute velocity 1 = conditions at inlet to the
sional; see equation (1)) z = axial coordinate stator
D = pressure n = efficiency 2 = conditions at inlet to the
Q = volume flow v = kinematic viscosity rotor
r = radius p = density 3 = conditions at exit from the
rV, = mean swirl w = rotational speed rotor
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was chosen equal to 0.6, since it is for a specific speed around
this value that one can expect the best level for the static-to-
total efficiency in radial-inflow turbines. The preliminary one-
dimensional design of this turbine was based on the theory ad-
vanced by Rohlik (1968), choosing for the tip diameter of the
rotors a value of 310 mm.

As already mentioned, two different impellers were tested in
this radial-inflow turbine rig. The first one, which will be
called the conventional rotor from now on, was designed using

Journal of Turbomachinery

Fig. 3 Rotors side by side

iteratively an analysis program and is characterized by having
radial blades., The program used was a streamline curvature
through-flow program based on the method described by Van-
co (1972). This analysis program was used to predict the flow
field for slightly different geometries (but maintaining always
the restriction of radial blades). The final geometry chosen
was the one that gave the best distribution for the velocities on
the blade surfaces and an exit swirl equal to zero. This
geometry is defined in Fig. 2(a) where the meridional
geometry is given (note that the meridional geometry was kept
the same for both rotors) and in Fig. 2(b) where the wrap
angle distribution used is plotted (since the conventional rotor
has radial blades, the wrap angle is only a function of the axial
distance, z. The function f(z) is plotted in Fig. 2b).

The second impeller, which will be called the new rotor
from now on, was designed using the method described in Part
1 of this paper (Borges, 1990), and its geometry is defined in
more detail there. Further information on the design of both
rotors can be found in Borges (1986).

A photograph of the two impellers side by side is presented
in Fig. 3, and it can be seen that they are quite different.
Therefore this work has the additional interest of presenting
experimental results for two very different rotors, designed us-
ing two completely different philosophies.

As the tip gap could have a major effect on the rotor perfor-
mance, it is convenient to indicate its value for the tests done.
The inlet tip clearance was equal to 0.56 mm (1.5 percent of
span) and the exit tip clearance was equal to 0.58 mm (0.75
percent of span). A more careful check, made only for the new
impeller, showed that the exit tip clearance varied in the cir-
cumferential direction from a minimum value of 0.41 mmto a
maximum value of 0.64 mm (0.83 percent of span). These
measured values of tip clearance are so small that they will not
have significant effects on the efficiency, according to the con-
clusions advanced in Futral and Holeski (1970).

3 Experimental Results

The first set of experimental results to be shown consists in
all the measured points for the total-to-static efficiency of
both rotors as a function of volume flow, presented in Fig. 4.
In this figure, the volume flow was made nondimensional by
dividing it by wD? (D is the tip diameter of the impellers). For
nominal conditions, the Reynolds number, defined as
Re = (wD?/v), was equal to 2.1 x 10,

It can be seen from Fig. 4 that the conventional rotor shows
a mean peak value for the total-to-static efficiency of around
0.876 percent. This value compares quite favorably with what
can be achieved with the current technology. In fact, Rohlik
(1968) predicts a maximum value of the total-to-static efficien-
cy of 0.87 percent for a specific speed around 0.6. Published
experimental results corroborate this conclusion. For exam-
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Fig. 4 Measured total-to-static efficiency (the Reynolds number for
nominal conditions is Re=2.1 x 107)

ple, Kofskey and Wasserbauer (1966) measured an absolute
maximum total-to-static efficiency of 0.87 percent for a
specific speed of 0.67 and Kofskey and Nusbaum (1972)
reported a value of 0.880 percent for a specific speed of 0.59.
More recently Ribaud and Mischel (1986) measured a max-
imum value of 0.883 percent for the total-to-static efficiency
of a radial-inflow turbine characterized by a specific speed
equal to 0.58. All these results indicate that the efficiency
levels obtained in our tests are typical of the present know-
how. Therefore, the conventional rotor provides a good
standard against which to compare the performance of the
new impeller.

Doing this comparison, it is seen that the new rotor shows a
mean peak value for the total-to-static efficiency of around
0.890 percent, which is 1.4 percent better than the correspond-
ing value for the conventional impeller. This difference be-
tween the efficiency of the two rotors is significant since it is
greater than the probable error (1.3 percent) in the measure-
ment of efficiency. Reflecting this conclusion is the fact that
all the measured points for the new rotor fall systematically
above those obtained for the conventional rotor, near peak ef-
ficiency conditions (Q/(wD3)=0.046; see inset in figure).
Notice that the efficiency near peak efficiency conditions was
measured for a good number of points in order to be able to
ascertain the scatter in the experimental points as accurately as
possible.

The comparison of the efficiency levels of both impellers
also show that the gains were achieved over most of the tested
range of volume flows, although for volume flows smaller
than nominal conditions and in the range 0.055<Q/
(wD*)<0.08, the difference between both impellers is small.
For very large volume flows (Q/(wD?)>0.08) the gains in ef-
ficiency increase again, reaching a value of 3.4 percent for the
highest volume flows tested (Q/ (wD?)=0.14).

Now that an improvement in the total-to-static efficiency
has been demonstrated, the next question that arises is why it
is s0, and the reasons for these differences. A complete answer
to this question would require detailed flow measurements
made inside the rotors, measurements that were not carried
out. Nevertheless, it is possible to shed some light on this ques-
tion by analyzing the results of measurements obtained
downstream of the rotors (at station C). This will be our aim
in the following.

The first set of results (Figs. 5a, b) to be presented give the
measured absolute velocity downstream of the rotors. Figure
5(a) shows the velocity profiles obtained with the conven-
tional rotor for five different volume flows, their values being
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indicated in the figure (peak efficiency conditions corre-
sponding to (Q/ (wD?) =0.0479). Figure 5 (b) presents the cor-
responding results for the new rotor (peak efficiency condi-
tions are obtained for a value of Q/(wD?)=0.0466). In these
plots, the radius was made nondimensional, dividing it by the
tip radius of the impellers (ry,), and the velocity was non-
dimensionalized using the blade tip speed (U, = wry,).

The results for both rotors show similar trends. In fact, the
overall shape of the velocity profiles change a lot, becoming
more nonuniform for larger volume flows. As the volume
flow increases, the general level of the absolute velocity in-
creases markedly near the hub, while remaining roughly the
same near the shroud. Notice also that the velocity profiles for
both impellers are not uniform in the spanwise direction even
for peak efficiency conditions. Nevertheless, for peak efficien-
cy conditions, the new impeller shows a more uniform profile
than the conventional rotor.

An.important variable in the inverse method described here
is the mean swirl, rV,. So, it is interesting to evaluate its value
from the results of the downstream traverses and to compare it
for both rotors. That is done in the next two figures, Fig.
6(a), giving the measured values of mean swirl for the con-
ventional rotor, and Fig. 6 (b) for the new impeller. A positive
value of rV; corresponds to a component of ¥, in the direc-
tion of rotation of the impeller, the radius and velocity being
made nondimensional in the same way as in Fig. 5.

Transactions of the ASME

Downloaded 01 Jun 2010 to 171.66.16.66. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



0.16 T T i T T T T o T
- bol Vol. FI 4
0.14 ymee (nonn—dlr::ln.)
© 0.0358
0.12 ¢ s 0.0415 -
o 0.0479
a 0.0535
. b1of v 0.0606 -
a
D'*: 0.08 -
2
oy 0.06 5
~—
R 0.04
@ . - -
2
0.02 | =
0.00 | ; .
-0.02 | v [ h
llnner walt outer wulll
_0‘04 A - - il 1 Il
0.15 0.25 0.35 0.45 0.55 0.85 0.75
r/rﬁp

Fig. 6(a) Swirt downstream of rotor at station C; conventional impeller

0.12 T v T g T T T T T
Symbol Vol. F1
0.10 (non°—~dir::n‘) B
o 0.0359
3 0.0414
0.08 r o 0.0465 -
o 0.0528
—_ 0.06 + 4 0.0814
Q. : 1
—_—):'j
o 0.04 | 1
R
St
N 0.02 [— 1
>
~  o.00} N
-0.02 B
~0.04 | v B
|Inner wall outer wal[l
—-006 J. Il Il L i
0.15 0.25 0.35 0.45 0.55 0.65 0.75
r/rtip

Fig. 6(b) Swirl downstream of rotor at station C; new impeller

Both set of results (Figs. 6a, b) show that, as the volume
flow increases, the general level of rl76 tends to decrease and
that its profile becomes more peaky, with the peak occurring
near the shroud. It can also be seen that there are significant
portions of the exit flow with values of 7V, quite different
from zero for all volume flows tested (including peak efficien-
cy conditions). It should be emphasized that the nonuniform
variation of downstream mean swirl, rV,, is not peculiar to
these particular tests but, rather, seems to be common to other
published results. For example, Kofskey and Wasserbauer
(1966) concluded that for all the radial-inflow turbines they
tested, there was a nonuniform distribution of work in the
spanwise direction, with minimum work occurring at the
shroud. This is exactly the same trend observed here.

As is well known, the exit tangential component of the ab-
solute velocity is very difficult to recover efficiently, using a

downstream axial diffuser. So, the angular momentum-

associated with this tangential component will be thrown away
without taking advantage of the potential it has. Not only is
this component lost, but it also has a very unpleasant implica-
tion in case the r¥, is not uniform along the span (as in the
present case). In fact, assuming irrotational flow at inlet to the
impeller, the nonuniformity of r¥, will imply that there are
trailing vortices being introduced at the trailing edges of the
rotor blades. These vortices cause a nonuniform velocity pro-
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Fig.7 Comparison of downstream swirl for peak-efficiency conditions

file, which has a larger kinetic energy than the minimum possi-
ble and thus penalizes unnecessarily the total-to-static efficien-
cy. In this connection and corroborating the above statement
note that the absolute velocity profiles (Figs. 5a, b) show a
pronounced dip located exactly in the same region where there
is a rapid variation of r¥, (see Figs. 6a, b). Note also that as
the volume flow increases, both effects become more marked.

From the foregoing, it is obvious that it is desirable to have
a mean swirl at exit as small and as uniform as possible. In-
deed, both rotors were designed for an exit mean swirl con-
stant along the span and equal to zero. In this respect the new
rotor performed much better than the conventional rotor as
the comparison of the downstream mean swirl for peak effi-
ciency conditions, presented in Fig. 7, clearly shows. In fact,
the new impeller shows an r ¥, level that is approximately only
half as big as the one observed for the conventional rotor.
More significantly, the gradients of rV, are smaller for the
new design. This smaller level of rV, and its gradient suggests
that the flow through the turbine was more accurately
predicted in the new design, thus implying that the application
of this inverse program was a move in the right direction.
Notice also that, as was to be expected from the above
arguments, the reduced value of the gradients of rV, leadsto a
more uniform measured velocity profile (compare Figs. 5a,
b). This more uniform exit flow not only reflects itself in a
better total-to-static efficiency, but also means that all the
downstream components will be more easily projected since
they receive a cleaner flow. This is particularly true of the
downstream diffuser that will perform so much the better the
more uniform is the flow at exit of the rotor.

Since the flow conditions were measured both upstream and
downstream of the rotors, it is possible to calculate the varia-
tion of local loss as a function of radius. This loss is defined
as:

@

olU, V20 —-U V30]streamline]
[pol —-D 03]streamline

where the subscripts 2 and 3 refer to upstream and
downstream conditions, respectively, and p, is the total
pressure. The subscript streamline means that both quantities
inside the bracket lie along the same streamline. The
streamlines were traced back from downstream to upstream
by assuming that the volume flow that passed between them
and the hub was the same. Upstream conditions were
calculated by interpolating in the pitch average profiles of the
measured variables (see Borges, 1986).

The variation of local loss with radius for the conventional

[local loss=1-—
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rotor is given in Fig. 8(a), and for the new rotor in Fig. 8(5).
In these two figures, only three different vlaues of volume
flow are considered because it is only for these volume flows
that traverses were made upstream of the rotors. The exact
values of the volume flows considered are indicated in the
figures. As can be seen in both figures, the local loss takes, on
average, the smallest values for peak -efficiency conditions as
one would expect.

All the curves for the conventional rotor show the same
trend, with the loss increasing sharply near the shroud, and
reaching there values much higher than at the hub. This large
increase of the rotor loss toward the shroud indicates that
something anomalous is happening near the shroud, possibly a
flow separation. However, the experimental evidence gathered
does not permit us te reach this conclusion with certainty. The
general trend described above is also typical of other tests
reported in the literature (see Kofskey and Wasserbauer, 1966,
and Kofskey and Nusbaum, 1972).

The local loss curves for the new rotor show trends similar
to those already discussed above, the biggest difference lying
in the lower level for the measured local loss. This can be seen
more clearly in Fig. 9, which presents a direct comparison of
the local loss for peak efficiency conditions. The curve for the
new impeller is consistently below that for the conventional
impeller all along the span and not in a concentrated region. It
should also be noted that the loss for the new impeller is very
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Fig. 9 Comparison of local rotor loss (total-to-total)

small between the hub and midspan, almost reaching a zero
value,

Based on the results for the absolute velocity, mean swirl,
and local loss, it can be said that the conventional rotor is
typical of the present technology, not only in what concerns
the measured efficiency level but also with respect to the
detailed fluid behaviour inside the rotor. The new rotor
presents better efficiency, a smaller mean swirl at exit, smaller
local loss, and a slightly more uniform downstream velocity
profile. Of course, it is recognized that the new impeller has
some disadvantages, in that it is more expensive and difficult
to manufacture than the conventional make. Nevertheless, it
should find application in situations where efficiency is of
paramount importance.

At this point it should be stressed that the above improve-
ment in efficiency and flow field was brought about not based
on experimental information from the tests of the conven-
tional rotor but rather based on theoretical considerations and
the application of the inverse method. This is exactly the op-
posite of what is usually done (see, e.g., Sasaki et al., 1977,
where the improvements were obtained based on experimental
information) and demonstrates the usefulness of the inverse
program described in Part I.

4 Summary and Conclusions

Two markedly different impellers were tested and their per-
formance compared in the present work. The first impeller
tested, called the conventional impeller, was designed so that it
would be characteristic of present-day technology. As such,
this rotor has radial element blades and was designed using a
throughflow analysis program iteratively. The intention
behind the tests of the conventional rotor was to acquire a set
of data typical of the performance of currently available
radial-inflow turbines. As demonstrated above, this aim was
fully achieved. Indeed, the efficiency level obtained with the
conventional wheel compares favorably to that being obtained
nowadays. The typical nonuniform value of work done along
the span (or a nonuniform r ¥, at exit) and the deterioration of
local efficiency toward the shroud were observed as well.

The second impeller was designed using the described three-
dimensional inverse program and was tested in order to assess
the usefulness of this design method. As the geometry of this
impeller resulted from the calculations, the blade shape shows
double curvature and is not radial.

The tests showed that the new impeller had a peak total-to-
static efficiency 1.4 percent bigger than the conventional
rotor. There was also an improvement in efficiency for off-
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design conditions, the difference reaching a value of 3.4 per-
cent for the biggest nondimensional volume flow tested. It was
also demonstrated that, for peak efficiency conditions, the
new rotor had an outlet absolute velocity profile more
uniform, an exit mean swirl (r¥,) smaller and more uniform,
and a consistently lower value of the local rotor loss than the
conventional rotor. The more uniform values of r¥, indicate
that the use of the three-dimensional inverse program was a
step in the right direction. )

Finally, a link between a more uniform. r¥, downstream
value and a more uniform exit velocity profile was established.
In fact, the smaller variations of the downstream rV, values
measured for the new impeller are associated with exit velocity
profiles more uniform in the spanwise direction than those
observed with the conventional impeller. This fact, in turn,
causes a reduction of the exit kinetic energy loss and conse-
quently better total-to-static efficiencies. This argument points
to the desirability of designing the rotors of radial-inflow tur-
bines in such a way that they execute constant work along the
span. In this respect, note also that for radial-inflow turbines
with higher specific speeds than the present case, the possible
gains from a more orderly exit flow are probably bigger than
those proved in this study. The reason is that the exit kinetic
energy loss accounts for a larger proportion of the total loss
for radial-inflow turbines with higher specific speeds.

Another factor that could lead to bigger improvements in
efficiency than those demonstrated in this work is a more ap-
propriate choice of the input ¥, schedule. As mentioned by
Borges (1990), the rV, distribution used in the present design
is far from giving an ideal pressure distribution throughout the
rotor. It is to be expected that an improvement in pressure
distribution obtained by using a better 7V, distribution would
lead to an improvement in efficiency. This is a point on which
more research should be done.

This work clearly demonstrates the usefulness of using
three-dimensional inverse methods in the design of radial-
inflow turbines. In fact, an improvement of 1.4 percent is not
something to look down on. Furthermore, the author does not

Journal of Turbomachinery

see any physical reason preventing the extrapolation of these
results to radial and mixed-flow turbomachines, so that it is
believed that this technique could be usefully applied to this
sort of machine.
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A three-dimensional Euler analysis for turbomachinery flows on a C-type grid is

presented. The analysis is based on the Beam and Warming implicit algorithm for
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solution of the unsteady Euler equations and is derived from the ARC3D code
developed by Pulliam at NASA Ames Research Center. Modifications made to
convert this code from external flow applications to internal turbomachinery flows

are given in detail. These changes include the addition of inflow, outflow, and
periodic boundary point calculation procedures. Also presented are the C-grid con-
struction procedures. Finally, results of code experimental verification studies for
three-dimensional compressor cascade and rotor flows are presented.

Introduction

Over the past 15 years steady progress has been made in the
development of fluid flow analyses for turbomachinery blade
rows. The eventual goal of these analyses is a time accurate
model of the three-dimensional flow through the blade rows.
Solving the full Navier-Stokes equations over the entire flow-
field is the most complete model. Although Rai (1985, 1987)
has obtained time accurate Navier-Stokes solutions for a single
stage, and Adamczyk (1986) has developed an average pass
multistage analysis that includes viscous effects, a complete
model is still too complex and computationally too costly. This
is especially true considering that a highly accurate analysis
for any arbitrary compressor blade row does not yet exist.

The three-dimensional analysis methods that have been the
most highly developed and have provided the greatest ad-
vancements in the turbomachinery field are the time-dependent
Euler solvers based on a fully conservative form of the gov-
erning equations. They provide a single approach for subsonic,
transonic, and supersonic flows, and they inherently provide
natural shock capturing capability. In many cases, predicted
results from Euler solvers are in good agreement with exper-
imental data and provide accurate information on important
flow features such as shock location and static pressure dis-
tribution. Most importantly, an accurate and efficient Euler
solver forms the basis for an efficient viscous solution pro-
cedure. Denton (1974) was the first to develop an Euler solver
for turbomachines, and he has since been followed by others,
including Van Hove (1984), Shieh and Delaney (1987), and
Subramanian and Bozzola (1986). In general, these solvers have
been more widely used to predict turbine flows than compressor

Contributed by the International Gas Turbine Institute and presented at the
34th International Gas Turbine and Aeroengine Congress and Exhibition, To-
ronto, Ontario, Canada, June 4-8, 1989. Manuscript received at ASME Head-
quarters January 17, 1989, Paper No. 89-GT-85.
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flows and have been used routinely in the turbine design process
throughout the aircraft gas turbine industry.

The method of solution chosen for the compressor analysis
presented here is based on the implicit approximate factori-
zation algorithm of Beam and Warming (1976). There are many
important aspects to consider when choosing a method to solve
the Euler or Navier-Stokes equations. For finite difference
schemes, the two classical approaches for time integration are
explicit and implicit techniques. Both implicit and explicit
methods are capable of computing time accurately, but for
steady-state calculations, implicit methods have less stringent
stability criteria, allowing larger time steps to be used to speed
up convergence to the steady state. The CFL stability criteria
for explicit methods are much more limiting for Navier-Stokes
than for Euler equations because of the need to resolve the
wall region when solving the Navier-Stokes equations on highly
clustered grids. This limitation becomes less critical when the
Euler equations are considered since Euler solvers do not re-
quire high near-wall resolution. However, shock resolution is
becoming increasingly important in advanced high Mach num-
ber compressors, and small mesh spacings will be required in
the region of shocks, making implicit techniques advantageous
for Euler solutions. Recent work by Merriam (1987) also in-
dicates that schemes that satisfy a discrete entropy inequality
may need to be implicit to achieve second-order accuracy in
space.

The coordinate system is perhaps just as important as the
flow solver. In recent years there has been considerable prog-
ress in the development of body-conforming C- and O-type
grids for turbomachinery flow calculations. These grids are
capable of providing improved solution accuracy when com-
pared with the H-type grids used by Denton and others. Much
of the problem with H grids is due to the singular Jacobian
at the leading edge branch point. Body-conforming grids may
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make it easier to improve leading edge resolution without spe-
cial procedures. In any event, increasing accuracy and mini-
mizing error at the leading edge is very important because any
errors incurred at the leading edge are convected downstream
and adversely affect the solution accuracy over the entire airfoil
surface. )

This paper describes an efficient three-dimensional com-
pressor flow analysis method that incorporates an implicit
approximate factorization scheme based on the Beam-Warm-
ing algorithm along with body-conforming C-type grids. The
methodis based on the numerics in the ARC3D code developed
by Pulliam (1984) at the NASA Ames Research Center. In-
cluded in the paper are descriptions of the governing equations
for a rotating Cartesian coordinate system, the grid generation
scheme, and an outline of the method of solution. Numerical
solution results for two three-dimensional compressor flows
are presented and compared with experimental data to dem-
onstrate the predictive capability of the analysis method.

Governing Equations

The differential equations used in this study are the Euler
equations for a compressible fluid. If relative Cartesian velocity

H=E + p/p “

andu, = u — u,, v, = v — v, w, = ware the relative velocity
components; p is the density; p, the static pressure; u, v, and
w, the absolute velocity components in the x, y, z directions,
respectively; , the rotational speed of the blade row; u, and
v,, the velocity components of the rotating blade row at a given
X, ¥, z location; and E’, a rotational energy term.

Equation (1) makes up. a system of five equations for five
dependent variables p, u,, v,, W,, and E’. To solve the system
of equations numerically on a body-conforming grid system,
they are transformed to an arbitrary curvilinear coordinate
system. If the transformation equations are written

£E=Ex0,20
n = 9(x ¥, 2, 8 )
§=$x 920

and the chain rule is used for differentiation, with the inertial
Cartesian velocity components kept as dependent variables,
equation (1) can be rewritten as

G

90 9E oF
90 o8 o7 9D _ g 6
at Tor Ty T ar ©

components are retained as dependent variables in a system  where
attached to a rotating or stationary blade row, the three-di- —_
mensional unsteady Euler equations can be expressed in strong Y oU
conservation form as ou oulU+Ep
80 oE oF 3G 7 . Q= pv |, E=J1'F poU+&p |,
at Tt dy T ) ow pwU+Ep
where e _| phU—§p
4 pU, pLU, r —
vV
. ou, ptl+p OV, p oW
Q= v, | E = oU, JE= p2+p |, - pu11;+nxp y qu+‘§'xp
pW, pUW, pUW, - pvV+m,p G=1J poW+§p s
pE’ o, H v, H oWV +n.p owW+t,p
| ohV—yp | phW (D
oW, 0 0
pWU, pQ%x —2pQu, )
G=| owov. |, H= | 00%+200u @ H=J"0 +puQ 0
oW+ p 0 0
ow,H 0 0
1 1 .
D A w4+ v+ w) - 3 ut + V2 and where e is the total energy, and U, V, and W are the
(y-=Dp 2 contravariant velocity components in the £, 9, and { directions
(3) written without metric normalization and given by
Nomenclature
u,, v,, w, = relative velocity compo-
a = speed of sound nents in the x, y, z direc-
a, = reference speed of sound T, = total temperature tions, respectively
(inlet hub) t = time v, Ug, U, = velocity components in
C, = specific heat at constant U, V, W = contravariant velocity the r, 8, z directions,
pressure components in the &, », equation (18)
C, = blade section axial chord and ¢ directions, respec- x, ¥, z = Cartesian coordinates
e = total internal energy tively v = ratio of specific heats
h = enthalpy u, v, w = absolute velocity compo- A, v = forward and backward
Js k, I, n = indices for &, 4, ¢, and ¢ nents in the x, y, z direc- difference operators, re-
coordinates, respectively tions, respectively spectively
J = Jacobian of coordinate u. = Qy = velocity component £, 7, ¢{ = general curvilinear coordi-
transformation of rotating coordinate nates ’
M = Mach number system in x direction p = density
D = pressure v. = —Qx = velocity compo- p; = reference density (inlet
r, 8, z = cylindrical polar coordi- : nent of rotating coordi- hub)
nates nate system in y direction Q = rotational speed of rotor
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U= Ex(u_uc) + Ey(v_vc) + gzw
V = ndu—u) + ny(v_vc) + W &
W= tdu—u) + {o—v) + §w
The inverse Jacobian of the transformation, J~!, is defined
as
X Xy Xy
Yerye| ©)
I 2 2y 2¢

I =

and the metrics are given by the equations

Ey = JO’T,Z;—)’;ZT,) Nx = J(Zg)’r—)’szf)
Ey = J(znx(—xnzf‘) Ny = J(xfzi'_xfzs)
£, = Joye—yXe)  mp = JOpxe— Xy
g-x JOEzﬂ—zEyn) El = '_x'r‘z::x—yrgy - ZT‘EZ
(y = J(xan-xfzn) m = _xrnx_yrny - ZNy
g‘z J(x‘;’yn—ysxn) ‘(-t = _xrg‘x_y-rg‘y - z1§_z

I

(10)
The Cartesian velocity components u#, v, and w are nondi-
mensionalized with respect to the speed of sound at the inlet
of the hub section, a;; density, p, is referenced to the hub inlet
density, p;; and the energy and pressure to p,a5. Pressure is
defined as

p = (-1 [e~0.500? + 1* + wY]

with v as the ratio of specific heats.

(an

Coordinate System

The coordinate system for the three-dimensional analysis is
a C-type body-conforming system. This grid is particularly
attractive because it affords high resolution of the leading edge
region to capture bow shocks and minimize the errors that
would be convected downstream. As shown in Fig. 1, this
system is constructed by radially stacking two-dimensional, C-
type grids on surfaces of revolution.

The grid generator is capable of modeling the complete ge-
ometry of compressor blade rows including endwall contour
and blade twist. The boundary of the physical passage domain
is defined by the hub and shroud endwalls and the inlet and
exit boundaries as shown in Fig. 2. The location and shape of
the inlet and exit boundaries may be defined as planar surfaces,
but are generally constructed to follow the curved contours of
the leading and trailing edges of the blade, respectively. The
distances between the blade leading edge and inlet boundary
and the blade trailing edge and exit boundary are specified as
percentages of the blade chord at a given radial location. The
two-dimensional blade-to-blade surfaces intermediate to the
hub and shroud are surfaces of revolution. C-type grids are
constructed on these surfaces using elliptic techniques. In the
grid generation process, a mean radius is calculated for each
surface, and the surface is then projected onto a cylinder of
that radius (see Fig. 2). A grid for each cylindrical section is
then found by solving an elliptic system of partial differential
equations (Thompson et al., 1985) to produce blade conform-
ing two-dimensional grids. Controlling functions are intro-
duced to enforce. orthogonality. Grid point locations on the
blade surface are determined by imposing orthogonality at the
surface. All of these steps are performed in an interactive
manner, so that the user is able to monitor the generation and
alter the grid by varying parameters.

Numerical Algorithm

The algorithm used to solve the system of equations (6) is
an implicit approximate factorization finite difference scheme.
The scheme was developed by Beam and Warming (1976) and
was used initially by Steger (1977) and subsequently by Pulliam
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Fig.2 Schematic diagram showing meridional view of the phys-
ical grid domain

and Steger (1980). Explicit and implicit artificial dissipation
terms are added to attain nonlinear stability, and a spatially
variable time step is used to accelerate convergence for steady-
state calculations. The diagonal form of the algorithm is used
because it allows for the use of fourth-order implicit dissipation
and produces a robust, rapidly converging scheme in most
cases.

By applying implicit time differencing, local time linear-
izations, and approximate factorization as shown by Pulliam
(1984), equation (6) can be written as

U+ hdy A"YI + hé, B"YI + h6,CMAQ"
= —h[6E"+6,F"+6.G"— H] 12)
where A = dE/3Q, B = dF/3Q, and C = 3G/9Q are the flux

Jacobians, each of which has real eigenvalues and a complete
set of eigenvectors. The term 4 is the spatially variable time

step, given as dz/(1. +\/}). The development of the method
of solution and the algorithm are given in detail in papers by
Beam and Warming (1976), Steger (1977), Pulliam (1984), and
Pulliam and Steger (1985). Equation (12) consists of an implicit
(left) side and an explicit (right) side. The left side has three
implicit operators, each of which is block tridiagonal. The
spatial derivative terms are approximated with second-order
central differences. The computational work can be decreased
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by introducing a diagonalization of the blocks in the implicit
operators as developed by Pulliam and Chaussee (1981). The
eigensystem of the flux Jacobians A, B, and C is used in this
development. Because the flux Jacobians have real eigenvalues
and a complete set of eigenvectors, the matrices can be diag-
onalized (Warming et al., 1975; Turkel, 1973), i.e.,

Ay = T{'AT,, A, = T;'BT,, Ap= T7'CTy  (13)

where T, T,, and T, are the matrices whose columns are the
eigenvectors of A, B, and C. Replacing 4, B, and Cin equation
(13) by their eigensystem decomposition yields

[T T5 '+ ho(TeA T NIT, Ty + hé,(T,A, Ty Y]
[TT ' + ho(TeA T HIAQ"
= explicit right-hand side of equation (12) = R"

(14)

A modified version of equation (14) can be obtained by fac-
toring the Ty, 7,, and T, eigenvector matrices outside the
spatial derivative terms &, 6,, §;. The resulting equations are

TelI+ h6 A NI+ h, AP+ hSA]T7 'AQ" = R*  (15)

where N = 77T, and P = T, 'T,.

The explicit side of the diagonal algorithm is the set of steady-
state finite difference equations and is exactly the same as the
original algorithm. In addition, computational experiments by
Pulliam and Chaussee (1981) have shown that the convergence
and stability limits of the diagonal algorithm are similar to
those of the block tridiagonal algorithm. The diagonal algo-
rithm reduces the block tridiagonal inversion to four 5 X 5
matrix multiples and three scalar tridiagonal inversions, with
an overall savings in computational work that can be as high
as 40 percent (Pulliam, 1986a).

Code Developments

The turbomachinery flow code that has been developed is
based on the external flow code ARC3D, which was written
at the NASA Ames Research Center. The original ARC3D
code is capable of calculating the flow about bodies with bi-
lateral symmetry in an external environment. The steps used
to adapt the code and algorithm to turbomachinery flow are
outlined in this section.

The first step in this adaptation was the reformulation of
the Euler equations in a rotating Cartesian frame of reference.
This involved the inclusion of terms to account for velocities
and accelerations in the relative system. The second step was
the transformation of the equations to generalized curvilinear
coordinates. This yielded equation (6), which is very similar
to the form of the equations shown by Pulliam and Steger
(1980) or Pulliam (1986a) where the algorithm is given in more
detail. The major difference is the presence of source terms to
account for relative accelerations. At this point, it was possible
to follow the development shown in detail by Pulliam (1984)
and briefly in this paper to arrive at the diagonal form of the
algorithm. »

The next step involved code modification to account for the
relative terms. The form of the code that had been obtained
did not account for these terms in a global sense. The changes
to the original code were extensive and were implemented in
a general manner. The code defines the velocity of the rotating
coordinate system at each point and calculates the relative
velocity and acceleration components when required.

Although the changes in a Cartesian system formulation to-.

account for rotation are more extensive than those in a polar
coordinate system formulation, the truncation error in a Carte-
sian formulation is not a function of radius as it is with the
polar coordinate formulation. This advantage may become
more important as the accuracy required from the analysis
increases.

After the equations had been reformulated and the basic
code has been modified, the far field external flow boundary
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point calculations from ARC3D were replaced by three-di-
mensional calculations for the treatment of periodic, inlet, and
exit boundaries. With the modifications to the boundary pro-
cedures and those to account for the relative system of ref-
erence, the code was qualified for axial turbomachinery flow
computations.

In addition to the major modifications for turbomachinery
flow calculations, some algorithm modifications or upgrades
were also implemented. First, the mixed second- and fourth-
order damping scheme of Jameson (1981) was extended from
one to all thrée coordinate directions. This scheme is explained
in the section on the nonlinear artificial dissipation model.
Second, an alternate procedure for calculation of the metrics
was added because central differencing for the calculation of
three-dimensional metrics introduces errors resulting from
nonzero metric invariants. This procedure, described by Pul-
liam and Steger (1980), can be used to ensure that the metric
invariants are exactly zero. Basically, this is a weighted av-
eraging that computes the metrics in a finite volume manner.
The alternative is to subtract out the local error term that arises
when the strong conservation form of the equations is used as
a source term on the explicit right-hand side. This is not the
same as the approach of Pulliam and Steger for maintaining
the free stream. However, it is the approach that contributed
most toward improving the three-dimensional solutions.

Boundary Conditions

As with the ARC3D flow code, the dependent variables are
updated explicitly, which means that there is a first-order error
in time at the boundaries. Because the boundary procedures
are a modular element of the code, they can be altered or
replaced without interfering with the implicit algorithm. The
far field boundary procedures in ARC3D were replaced with
three-dimensional turbomachinery boundary procedures. For
three-dimensional turbomachinery calculations, there are six
boundaries. Figure 3 is a schematic diagram of a two-dimen-
sional C-grid section. Three of the boundaries, the hub and
tip section and the blade, are solid surfaces. The other three
boundaries are the inlet, exit, and periodic boundaries.

At the inlet, an extension of the two-dimensional procedure
used by Chima (1985) that allows for the specification of total
temperature, total pressure, and the radial and tangential ve-
locity components is used. Nonuniform radial distributions of
any of these properties can be specified. The procedure uses
a characteristic boundary condition similar to that used by
Jameson and Baker (1983) where the upstream-running Rie-
mann invariant R~, based on the total velocity g, is extrap-
olated from the interior to the boundary, i.c.,

R™ = (@—2¢/(v— Dext (16)
where ¢ = (yp/p)'/?is the speed of sound. Total temperature,

{‘{max

Per1od1c—\

Exit plane

L = max

Periodic

Physical plane

Fig. 3 Schematic diagram of a two-dimensional C-grid section
showing inlet, exit, and periodic boundaries
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T,, and isentropic relations are then used to determine g, the
total velocity

Gin = [(v—I)R‘+\/z(7+l)CpTo—Z(v--l)(R“)z]/(7+1)
amn

The axial velocity component is found from trigonometric
relations, and pressure and density are determined using is-
entropic relations.

At the exit boundary points, the static pressure is specified,
and p, u, v, and w are extrapolated from the inner field. The
pressure at the hub surface is set and the radial pressure dis-
tribution is determined using a simplified version of the radial
equilibrium equation

% _ (9& _p e 6_v>

o, \r " U9, T Ty,
This equation is integrated at each time step following the
extrapolation of the other flow variables. The calculated pres-
sure distribution is then imposed as a boundary condition at
the next time step. Initially when the relative difference between
the back pressure and the inner field pressure is large, the
nonreflective procedure of Rudy and Strikwerda (1980) is used
because the specified pressure is imposed asymptotically, and
the flow field is not immediately presented with a sharp dis-
continuity.

On the hub and shroud endwalls, and the blade surface,
solid surface boundary procedures very similar to those out-
lined by Pulliam and Steger (1980) or Chima (1985) are im-
plemented. For example, on the blade surface, { = const, the
flow tangency condition is enforced by setting the normal
contravariant velocity component, W = 0, and extrapolating
the other two contravariant components, U/ and V. The Carte-
sian velocity components are found using metric relations, i.e.,

(18)

U
v
w
(le.(‘z - "7z§'y) ""(gyg‘z - gzg‘y) (gynz - nygz)
=J! (nedy — ﬂzg‘x) (el — £.5) —Em, — £
(ﬂx{y - Vnyx) (Exg.y - gyg'x) (Ex"]y - gynx)
U - &
V- (19)
W - £

Pressure is found using the normal momentum relation,
which is a combination of the three transformed momentum
equations given by

172
Pa (s‘§+ 2+ §%>

it

Ele+ 65+ E8DD:

+ L+ 18+ 1500y
(SRR 2s

= pl0.{,+ud L+ v0,, + Wi, il
= pU(§ g + §0g + W)

= pV(utty + S0, + $owy)

+pQ0u — pQfv
(20)

where n is the normal direction to the ¢ = const solid surface.
In this form, the boundary conditions are applicable to steady
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or unsteady motion. Surface densities are found using a bound-
ary condition suggested by Chima (1985) and by Barton and
Pulliam (1984). The entropy expressed as S = p/p” is extrap-
olated to the body and used to find the density. This condition
is very stable and conserves total pressure or entropy better
than a boundary condition in which rothalpy or total enthalpy
is specified.

Nonlinear Artificial Dissipation Model

One of the important aspects of compressor aerodynamics
is the ability to capture shocks and predict shock losses.
MacCormack and Baldwin (1975) used a second-difference
dissipation operator for the solution of the Navier-Stokes
equations for flow with shocks. More recent work by Jameson
et al. (1981) and Pulliam (1986a, 1986b) shows that a mixed
second- and fourth-order dissipation model with appropriate
coefficients should give a central difference scheme good shock
capturing capability. The model used in this analysis is the
combined second- and fourth-order model first proposed by
Jameson et al. (1981). The model expressed in simplified no-
tation for the ¢ direction is written

~ @ @
V0 i + o e 80~ 6 AV A Q)
with
pjo1—20;+ D1
& = KAt max(Ty_y, T, Ty, ), Ty = ————L L
Disit2pi+piy

Y~ max(0, K,At—c)

€
o, = 1Ul + aNJEZ+EZHEL + 1V + aNme+n)+n2
+ Wl + an 2+ 242 21

which is the sum of the spectral radii of the flux Jacobians A4,
B, and C. For simplicity of presentation, only the j subscripts,
which correspond to the £ direction, have been presented. The
suggested values for the constants are K, = 1/4and K, = 1/
100.

The first term is a second-order dissipation model with an
extra pressure gradient coefficient to increase its value near
shocks. The second term is a fourth-order model where the
logic to compute ¥ switches it off when the second-order
nonlinear coefficient is larger than the constant fourth-order
coefficient. This occurs very near a shock. Near computational
boundaries, the fourth-order dissipation term is modified to
maintain a dissipative term. A derivation and analysis of var-
ious boundary treatments for dissipation models is given by
Pulliam (1986b).

Results and Discussion

Numerical solution results for a compressor cascade and an
isolated rotor are presented and compared with experimental
data. The solutions were started from uniform inlet hub con-
ditions with the hub exit static pressure set at the desired steady-
state value. The final values of the damping coefficients for
the rotor solution were K, = 1/3 and K, = 1/50, which were
above the suggested (Pulliam, 1986a, 1986b) values of K; =
1/4 and K, = 1/100. The solutions were assumed to be con-
verged when the root-mean-square average of the right-hand
side residual had been reduced more than three orders of mag-
nitude; however, this is more a rule of thumb than an absolute
criterion.

Controlled Diffusion Airfoil. The accuracy of the three-
dimensional code was tested during its development by com-
parison of solutions with experimental data. The initial veri-
fication was carried out using data for a rectilinear cascade of
supercritical airfoils. The cascade data were used to validate
the turbomachinery boundary point. calculations.
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The rectilinear cascade, shown in Fig. 4, was tested by Ste-
phens and Hobbs (1979) over a range of inlet Mach numbers
and incidence angles. Sample experimental midspan airfoil
Mach number distributions are presented in Fig. 5. Two-di-
mensional and three-dimensional flow predictions were made
for the design operating condition with inlet Mach number M,
= 0.735 and incidence / = 0 deg. The three-dimensional anal-
ysis accounted for the endwall boundary layer blockage by
linearly contracting the endwalls by the axial velocity density
ratio (AVDR) of 1.17, whereas the two-dimensional analysis,

Fig.4 Three-dimensional coordinate system for a rectilinear
supercritical airfoil cascade

1.4 o Experimental data (AVOR = 1.17)
~—— 3-D numerical solution (AVDR = 1.17)
1.2 ——- 2-D numerical solution (AVDR = 1.0)

Surface Mach number

| 1 | J

I
00 0.2 0.4 0.6 0.8 1.0

Fraction of axial chord--X/Cx
Fig.5 Airfoil surface Mach number distribution for the midspan
section of a supercritical airfoil cascade (M, = 0.735; i = 0 deg;
P,IP, = 1.15)

a Experimental data

determined using the same numerical scheme, did not account
for blockage. As shown in Fig. 5, the three-dimensional pre-
dictions more closely match the experimental data. The oscil-
lations in the solution near X/Cx = 1.0 result from the use
of a C-type grid that approximates the trailing edge geometry
as a wedge. :

NASA Fan Rotor 67. The capability of the code to predict
flows in rotating blade rows was established and the solution
accuracy verified by comparing predicted results with exper-
imental datd for NASA fan Rotor 67, shown in Fig. 6. This
rotor provided a rigorous test for the grid generator and the
flow solver. The highly loaded rotor was tested at the NASA-
Lewis Research Center and reported by Pierzga and Wood
(1985). The rotor has 22 low aspect ratio (1.56) blades rotating
at 16,042 rpm with a relative tip Mach number of 1.38 at the
design speed of 1407.2 ft/sec and flow rate of 73.3 lb/sec. As
Fig. 6 reveals, this rotor has a large amount of twist from hub
to tip, which produces a highly three-dimensional flow field.
The C-type grid contains 121 normals, 21 contours, and 17
sections hub to tip. The solutions converged three orders of
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Fig. 6 Hidden line plot of the three-dimensional grid
for NASA Rotor 67 showing the blade passage and the
high amount of blade twist
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Fig. 7 Predicted and experimental Mach number distributions for NASA Rotor 67 at the peak efficiency

operating condition
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magnitude in approximately 500 iterations and required 10 min
of CPU time on a CRAY X-MP vector computer.

The analysis was used to simulate the flow at the peak ef-
ficiency and near-stall operating points.

Figure 7 shows predicted surface relative Mach number and
experimental near-surface relative Mach number distributions
for the peak efficiency operating point. The comparisons are
made at 30, 70, and 90 percent span, measured from the hub.
The predicted static pressure contours at the same spanwise
locations are presented in Fig. 8. Although the agreement is
better at 90 and 70 percent span, overall agreement is good.
The solution was obtained’ by adjusting the hub exit static
pressure to obtain the best overall agreement. At peak effi-
ciency, this was 1.4 percent higher than the reported hub exit
static pressure. Figure 8 clearly shows the shock structure within
the blade row at the near-tip sections.

Results for the near-stall operating point are presented in
Figs. 9 and 10. Figure 9 compares the predicted surface and
experimental near surface relative Mach number distributions
at 30, 70, and 90 percent span. Figure 10 shows the predicted
static pressure contours at 30, 70, and 90 percent span. Starting
with the peak efficiency solution, the exit static pressure was
raised until the best overall comparison was obtained for the
near stall operating point. In this case, the hub exit static
pressure was 2 percent higher than the reported hub exit static
pressure. Overall agreement is fairly good. The discrepancies

——

30% span 90% span

70% span

Fig. 8 Static pressure contour plots for NASA Rotor 67 at 30, 70, and
90 percent span at the peak efficiency operating condition

U Expsrimental data

30% span

0.8

Mach number, M
Mach number, M

0.6

0.4

0.4

0.2 02

0

between the predicted results and data on the pressure surface
near the leading edge may be due to inadequate mesh density
in that high gradient region. The static pressure contour plots
at 70 and 90 percent span show that at the near-stall operating
point, the passage normal shock has been driven upstream and
has combined with the leading edge bow shock.

Summary

An efficient three-dimensional turbomachinery flow analysis
method has beenpresented. The method, based on the implicit
approximate factorization finite difference scheme of Beam
and Warming, combines Pulliam’s diagonal form of the al-
gorithm for solution of the three-dimensional time-dependent
Euler equations with body conforming C-type grids. Explicit
and implicit artificial dissipation terms were added to attain
nonlinear stability. The grids were constructed by stacking two-
dimensional C-type grids on surfaces of revolution. Numerical
solution results for two three-dimensional compressor flows
have been presented. The solution for a cascade of supercritical
airfoils and for NASA fan Rotor 67 are compared with ex-
perimental data to demonstrate the accuracy of the analysis
method.
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Introduction

A goal of computational fluid dynamics for turbomachinery
is the prediction of performance parameters and the flow pro-
cesses that set their values. Achieving this goal for multistage
devices is made difficult by the wide range of length and time
scales in the associated flow fields. Currently the procedure
used in design and off-design analysis is based on a quasi-
three-dimensional flow model whose origins can be traced back
to the late forties and early fifties (e.g., Wu, 1952; Smith,
1966). This model requires calculations to be executed on two
orthogonal surfaces within a blade row passage of a multistage
configuration. One of these surfaces is an axisymmetric surface
of revolution whose intersection with a blade row defines a
cascade. The flow field relative to this cascade is assumed to
be steady in time. In practice, a finite number of such surfaces
are chosen to define a series of cascade flows from hub to
shroud. The other surface represents a meridional throughflow
surface. The flow associated with this surface is an axisym-
metric representation of the flow field within the machine.
This flow field is also assumed to be steady. The flow fields
on both surfaces are coupled and are solved iteratively. The
effects of unsteadiness, turbulence, and endwall secondary
flows are introduced through empirical correlations.

Although proven to be very useful, this flow model has its
limitations. Among these is off-design performance analysis,
and the ability to analyze unconventional machinery where
extrapolation of the underlying empirical database is required.
Other problems arise whenever there are large local variations
in the radial velocity component within a blade passage. Such
variations can be brought about by in-passage shock waves,
separated boundary layers, and endwall secondary flows. It is
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34th International Gas Turbine and Aeroengine Congress and Exhibition, To-
ronto, Ontario, Canada, June 4-8, 1989, Manuscript received at ASME Head-
quarters January 25, 1989. Paper No. 89-GT-152.
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experimental measurements. It will be shown that the secondary flow field generated
by the rotor causes the aerodynamic performance of the downstream vane to be
significantly different from that of an isolated blade row.

generally agreed upon that a way of overcoming these short-
comings is the development of a true three-dimensional flow
model.

Two three-dimensional flow models have been proposed for
the simulation and analysis of multiple blade row flows. The
first (Denton, 1979; Adamczyk, 1984; Ni, 1987), referred to
as the average passage flow modeled by Adamczyk (1986),
simulates the time-averaged flow field within a typical passage
of the blade row. The second simulates the unsteady deter-
ministic flow field within the machine. Although a number of
unsteady simulations of single-stage turbine configurations and
counterrotating propellers have been reported (Rai, 1987;
Whitfield et al., 1987), executing an unsteady simulation of a
multistage configuration of practical interest is far beyond the
capabilities of today’s advanced supercomputers. Further-
more, it is by no means obvious that performance prediction
requires such a high degree of flow resolution. However, be-
cause unsteady simulations of an idealized configuration may
prove to be a useful means of investigating the closure issue
associated with time-averaged flow models, this activity should
be pursued. In this work it will be shown that the simulation
of the time-averaged flow field within multistage machinery
is within the capabilities of today’s advanced computers and
that the average passage flow model gives more insight into
the flow phenomena that control the performance of multistage
machinery than today’s quasi-three-dimensional flow models.

The objective of this paper is to outline a procedure for
simulating the time-averaged flow field within a typical passage
of a blade row within a multistage machine. This model in-
cludes the effects of viscosity and compressibility, and the
influence of neighboring blade rows. The mathematical for-
mulation upon which this model is based has been outlined by
Adamczyk (1984). The algorithm used to solve the inviscid
form of the governing equations is reported by Celestina (1986),
and Adamczyk et al. (1986). The current work outlines a nu-
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merical solution procedure for the viscous form of these equa-
tions and an acceleration technique to enhance convergence.
In addition, a comparison will be made between experimental
data recorded during tests of a one and one-half stage, large-
scale, low-speed, axial flow research turbine and simulation
prediction. The underlying steady flow physics that appears
to control the performance of the second vane of this machine
will also be discussed.

Governing Equation

A complete derivation of the three-dimensional average-
passage equation system is presented by Adamczyk (1984).
These equations were derived by filtering the Navier-Stokes
equation in both space and time to remove all information
except that associated with the time-averaged flow field within
a typical passage of a blade row of a multistage configuration.
With respect to this blade row, the integral form of these
equations can be written

S%()\q)dv + L(A\g) = S AS dv + S ANe dv + L,(N\g)
M

The vector g contains the variables density, axial and radial
momenta, angular momenta, and total internal energy. A is
the neighboring blade row blockage factor and ranges between
zero and unity, unity being the value associated with zero blade
thickness. This parameter explicitly introduces the effect of
the neighboring blade row blade thickness. The operator L(Ag)
balances the mass, axial and radial momenta, angular mo-
mentum, and energy through a control volume. { Ak dv is a
source term due to the cylindrical coordinate system and
[ ASdv contains the body forces, energy sources, momenta,
and energy temporal and spatial mixing correlations associated
with the neighboring blade rows. A procedure for estimating
S has been outlined by Adamczyk et al. (1986) and is extended
here to include the effects of viscosity. The operator L,(\g)
contains the viscous and heat transfer terms. The vector g and
the operators L and L, are defined as

q = Ip, pv,, pv,, rovy, pe,)” 2
L= SdA INF dA, + A\G dA, + NH dAy (3)
and
L, = SdA INF, dA, + NG, dA, + NH, dA) )
where
F = [pvz: Pvg + Pa POV, IpU Vg, pHvz]T (5)
G = [pvr: PV, pvrz' + P rpu, Vs, pHUr]T (6)
H = [vng, pvov,, pvgv,, r(pvs + P), pHugl" ™
Fr [0 Trrs Tars T qZ] (8)
Gr = [0) Ters Trrs Tros qr] (9)
H, = [0, 7o, 7o, Taos dol” (10)
d
T = 2,43—” + AT eV a1
v, av
Tor = Ty = <azr) + <‘5f) (12)
1 dv, vy
= = + | = 13
T20 Toz 12 (r 89) <6z) (13)
v,
= 20 (E) + AV o V¥V (14)
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1dv, dvy v,
= = —-—— 4 = = — 15
Tro = Tor (r dz * ar r) (15
1dvy, v,
=2ul-——+—) + \,v .V 16
Top (] <r Y r> v (16)
oT
Qr = VT + VT + VyTy k— (17
: 0z
T
Gr = VT + 0Ty + veTe + K %7 (18)
197
4o = U;Tp, + UyTe + UpTgy + k- 60 (19)
2 P T
k= [o, 0, ’% — o} 20)

In the above equations p represents the density, V the absolute
velocity vector, p the pressure, and 7 the temperature. The
differential dv is the volume of the control volume and dA4,,
dA,, dAg are the differential areas of its sides. From the equa-
tion of state, the total internal energy is related to pressure
through the equation

P 1
, = + = lvl? (21
T )
and the total enthalpy, H, is related to p and e, by
H=e¢, +2 2)
I

Sutherland’s law is used to determine the molecular viscosity
coefficient, and Stokes’ hypothesis gives A, = —2/3 y,;. Tur-
bulence is accounted for by adding a turbulent viscosity u, to
the molecular viscosity u;

=t (23)

In a similar manner, the molecular thermal conductivity k is
replaced by

+.—If..

u
k=c,,[—1 =
)

P,

where C, is the specific heat at constant, pressure and P,.l; +
P.1,is the laminar and turbulent Prandtl number, respectively.
The two-layer algebraic model of Baldwin and Lomax (1978)
is used to model u,.

All lengths in the above equations are nondimensionalized
by a reference length normally taken as the largest blade row
diameter. The velocity components are nondimensionalized by
areference speed of sound, a,.¢/y where v is the ratio of specific
heats. Pressure and density are nondimensionalized by their
respective reference values.

For rotating flows, the absolute (fixed) reference frame is
transformed to the relative (rotating) frame by the transfor-
mation

} (24)

OapsoLute = Orerative + Of (25)

where Q is the rotational wheel speed. Introducing equation
(24) into equation (1) transforms L and L to

L= SdA (xi‘ dA, + NG, dA, + NH - rQq)dA0> (26)

. and

L, = SdA <)\FU dA, + \G,dA, + MH, — rQq)dA,,) 27
Discretization of the inviscid portion of equation (1) including
estimates of the surface area and volume is presented by Ce-
lestina et al. (1986). The viscous and heat transfer portion of
equation (1) is discretized by evaluating the shear stress and
the heat flux at the center of each face. The shear stresses and
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heat flux are estimated using central differences of the velocity
and the temperature field.

Artificial Dissipation

To suppress odd-even point decoupling of the solution to
the discretized equations, dissipative terms are added to the
equations. The operator L, is replaced in the discretized form
of equation (1) with D(\g)

D\g) = Dfq) + L\ (28)
where D[(q) is the added artificial dissipation operator needed
to prevent decoupling of the solution within inviscid regions
of the flow. The operator D; is patterned after the model
developed by Jameson et al. (1981) and is composed of three
spatial operators

Dq) = (D, + D, + Dg)q (29)
which can be evaluated separately. The dissipation in, for

example, the axial direction (and similarly for the others) is
expressed as follows:

D, = divinjk — o124k (30
where
2
diviyjue = €2 v,k Bediv 172,14
4 2
— &) ik (Az(Azqm/z,,,k)) €Y
2 2 : . .
eﬁjl,z‘j,k = k9B 12, min(; 43 Viv1 i 0.5)
. A Mk
X min == ] (32)
M
@ 0, k@ in (Misizie
€iv1/2j, = Max s K814 172,54, miIN M s
— @ (33)

i+1/2,j,k

and k2, k¥ are constants set at 1/8 and 1/512, respectively.
The symbols A and A? denote the first and second difference
operators, while 3 is the maximum eigenvalue of the Jacobian
matrix formed from F. The coefficient »;;, is defined as

~ |Pivijk = 2Pijx + Pisyji
kT
’ lPi+1 e+ 2P + Pioy g

v 34)
sJs
and is used primarily to prevent oscillations near stagnation
points and shocks.

Vasta and Wedan (1988) scaled the Jameson artificial dis-
sipation operator by a function of the local Mach number to
reduce its effect within viscous regions of the flow. The present
work uses the local meridional Mach number M normalized
by a reference upstream meridional Mach number M to ac-
complish this task. To prevent this function from increasing
the level of dissipation in the inviscid flow regions, the max-
imum value of this function is taken as unity. To reduce the
level of artificial viscosity resulting from highly stretched mesh
cells, we also adopted what is referred to by Vasta and Wedan
as individual eigenvalue scaling of the artificial dissipation
operator.

Solution Procedure

The discretized forms of the equations associated with the
averaged passage flow model are solved using a dimensional
sequencing algorithm. The motivation for the present algo-
rithm came from observing the evolution of the error history
associated with the algorithm reported in Celestina (1986). For
many cases the magnitude of the error associated with the
axisymmetric component of a variable was a significant frac-
tion of the magnitude of the error associated with the variable
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itself. It thus seems reasonable to expect that a solution al-
gorithm that explicitly reduced the error of the axisymmetric
component of the flow field would enhance the convergence
of the three-dimensional field. With the body forces assumed
known (i.e., S assumed known), the present algorithm iterates
between the three-dimensional flow equations and the corre-
sponding throughflow equations to enhance the rate of con-
vergence to the three-dimensional time asymptotic flow
problem. The construction of this algorithm is as follows. First,
the throughflow equations compatible with equation (1) are
derived by summing equation (1), as modified according to
the discussion in the preceding sections, over the tangential
index k. This is accomplished by premultiplying equation (1)
by the operator

£ =

ES

k
> (35)
k=1

where K is the number of control volumes spanning the pitch.
The result may be written as

455 d¥ + L@ - D@ - |NFdv + e|sav

dt

+ {s S)\k dv — SX kdv + L(&qg) — Lg)  (36)

- D(Lg) + £D(g)
where dv, \, § are defined as 37N
Lhdv = N dv (38)
LA dv = \qg dv (39)

while the operators £, L, and D are

- AN dv  _
£q = Ndy q (40)
L(@) = £L(Q) 1
D(q) = £D(q) (42)

The terms that appear on the right-hand side of equation (36)
are treated as forcing functions and are estimated using the
most recent value of the three-dimensional flow variables. Note
that the expressions that appear within brackets vanish by
construction in regions of the flow where ¢ = 7, and upon
convergence of equation (36) (i.e., 3/t \gdv = 0), £ q =
¢. The time asymptotic solution of equation (36) is thus iden-
tical to the axisymmetric average of the time asymptotic so-
lution to equation (1). The steady-state solution of equation
(1) can thus be obtained by cycling between a time-advancing
algorithm for equation (1) and a similar algorithm for equation
(36).

The discretized form of equation (1) is advanced in time
using the four-stage Runge-Kutta algorithm of Jameson et al.
(1981). Local time stepping (i.e., constant C.F.L. number) and
residual averaging are employed to enhance convergence. Upon
completion of a fixed number of temporal relaxation cycles,
the three-dimensional flow variables are used to evaluate the
right-hand side of equation (36). This equation is then ad-
vanced in time using the same integration procedure as that
for the three-dimensional system. After a fixed number of time
steps, the value of ¢ is updated according to the equation

a=9+ (@ - L9 (43)
where the g’s within the brackets are those that were used to
evaluate the right-hand side of equation (36).

The three-dimensional residual error based on the updated
value of g (i.e., equation (43)) is generally found to be largest
within the blade passage region. Prior to initiating the next
three-dimensional iteration cycle, the residual is reduced by
performing a fixed number of three-dimensional iteration cycles
(between five and ten iterations) over a local three-dimensional
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flow region, which extends a modest distance upstream and
downstream of the blade passage leading and trailing edges.
The inlet and exit boundaries of this reduced flow domain are
located in a region where the sum of the bracketed terms in
equation (36) is small. The inlet and exit boundary conditions
associated with the reduced flow domain are derived using the
updated variables obtained from equation (43). Within this
region of flow the values of ¢ obtained from relaxing the
reduced flow domain equations replace those obtained from
equation (43). )

The outlined solution procedure is a multigrid algorithm of
the form introduced by Brandt (1982). It was specially con-
structed to reduce the axisymmetric component of the error
vector, which at the start of the solution procedure is often
large. It also recognizes the spatial relaxation of the three-
dimensional flow field to an axisymmetric field away from the
blade row of interest. This recognition reduces the computa-
tional work required to obtain a solution relative to a more
traditional multigrid strategy.

The solution procedure outlined above has been imple-
mented in both a ¥V and W cycle framework. In the V cycle
strategy, one proceeds directly from the three-dimensional sol-
ver to the throughflow solver to the reduced flow solver before
going back to the three-dimensional solver. In the W cycle,
one proceeds from the three-dimensional solver to the through-
flow solver to the reduced flow solver and then cycles between
the throughflow solver and the reduced flow solver before
going back to the three-dimensional flow solver. The simu-
lation to be reported was executed using the V cycle strategy.
Experience with the W cycle is limited and needs further de-
velopment. However, a preliminary analysis showed the W
cycle strategy to require less computational work than the V'
cycle to converge to a fixed tolerance level.

When the three-dimensional flow field converges to a pre-
determined level, the body forces and energy sources required
as input to simulations of the remaining blade rows can be
estimated using the procedure outlined in Jameson et al. (1981).
The cycling of information between the simulated blade rows
of the multiblade row machine is carried out until the tangential
averages of the simulated blade row flow fields agree with each
other to a predetermined tolerance.

Boundary Conditions

All solid surfaces are modeled as rigid, nonslip, and im-
permeable. The surfaces are also assumed to be adiabatic.
These conditions imply that the velocity relative to a solid
surface is zero and that the temperature gradient normal to
the surface is also zero. The pressure at a solid surface is
obtained from the normal momentum equation evaluated at
the surface. At the inlet, either the mass flow or the total
pressure is specified along with the total temperatures and the
radial and tangential velocity components. The one-dimen-
sional Reinmann invariant C~ is extrapolated from the interior
to the boundary; with the specified flow variables, it defines
the incoming pressure, axial velocity component, and tem-
perature. The shear stresses and heat flux at the inlet are also
set to zero. At the exit radial equilibrium, with the pressure
specified at the hub, is used to establish the radial pressure
distribution. The flow quantities p, pv,, pv,, pvy are extrapo-
lated from the interior.

Grid Generation

As discussed by Celestina et al. (1986), the averaged passage
equation system requires that a mesh be specified for each
blade row of a multistage machine. In addition, the meshes
must have a common meridional mesh in order to eliminate
the need for interpolating the body forces and -correlations
from grid to grid. To capture shear layers and stagnation points
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properly a fine mesh spacing is required in a direction normal
to solid surfaces and in the blade leading and trailing edge
regions. A mesh generator capable of generating these features
is discussed in detail by Mulac (1986).

Results and Discussion

The simulation executed used the. Low-Speed Rotating Rig
at United Technologies Research Center. The Low-Speed Ro-
tating Rig (LSRR) is a stage-and-a-half turbine consisting of
an inlet guide vane, a rotor, and a stator. The inlet guide vane
contains 22 blades and the rotor and stator both contain 28
blades. The flow coefficient ¢ is 0.78 and the spacing between
blades, B, is 0.5. The LSRR grid contains 228 axial, 25 radial,
and 41 circumferential points. Each blade row contains 40
axial points distributed along the chord with 26 axial points
between each blade row, the inlet and exit.

The results to be presented required 11 h of Cray 2 C.P.U.
time. They represent but a small fraction of the information
obtained from the simulation. They are intended to illustrate
the degree to which one can quantitatively predict performance
parameters of interest to designers, and to reveal qualitative
information identifying flow phenomena that may have an
impact on performance. These results also reflect the current
state of model development. The first series of results shows
the predicted pressure distribution on the surface of each blade
row of the turbine as a function of axial chord length and
percent of span height. The span locations measured from the
hub are 1.3, 12.5, 50, 87.5, and 98.7 percent, respectively. The
experimental measurements taken at these locations are also
shown. Experimental data were also available for 25 and 75
percent of span but were not utilized since they provided little
additional information relative to the current discussion. The
results for the first vane are shown in Fig. 1. The predicted
loading level is seen to be in good agreement with the meas-
urements of Dring (1988). The predicted pressure surface pres-
sure distribution is in excellent agreement with the experimental
results. For the suction surface, the agreement between meas-
urement and simulation is good for the region forward of the
minimum pressure peak. Aft of the peak, the agreement be-
tween experiment and simulation deteriorates. This deterio-
ration is believed to be related to viscous effects (i.e., turbulence
and transition modeling) whose modeling could be improved.
Some exploratory calculations suggest that the boundary layer
aft of the suction surface minimum pressure is growing too
rapidly and, as a result of the radial pressure gradient, is being
transported toward the hub to an extent greater than that
suggested by a flow visualization studies. Improvements in the
agreement between simulation and experiment have been ob-
tained by incorporating a simple transition model in which the
flow remains laminar forward of the minimum pressure peak
and Baldwin Lomax turbulence model as implemented by
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Dawes (1986). The current simulation assumes the flow to be
fully turbulent from the leading edge of each blade, Work on
this problem is continuing. The next figure shows the predicted
and measured pressure distribution for the rotor. The predicted
loading levels appear to be in good agreement with measure-
ments, with the exception of the hub and tip region. The present
simulation does not include a clearance region, which should
account for some of the discrepancy in the tip region. The
pressure distribution along the pressure surface is once more
in excellent agreement with the measurements. At the midspan
and at 25 and 75 percent (not shown) of span the predicted
pressure distribution along the suction surface is in good agree-
ment with the data. At 1.3 percent and 12.5 percent of span,
the suction surface pressure coefficient is lower than that meas-
ured. As a result the loading is lower over the forward portion
of the rotor than what has been measured. Although the cause
of this discrepancy is unknown at the present time, one could
speculate that it may be due to an overestimate of the mag-
nitude and extent of the low-momentum fluid exiting the first
vane.

The pressure distribution for the last vane is shown in Fig.
3. Once again the loading level is well predicted with the ex-
ception of the location at 1.3 percent of span. The underpre-
dicted suction surface pressure coefficient at 1.3 and 12.5
percent of span suggests that the flow incidence to these sec-
tions is underestimated. There also appears to be a shift of the
predicted pressure distribution relative to the measured dis-
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tribution. This shift is believed to be caused by an overestimate
of the loss generated by the first two blade rows. With the
exception of this discrepancy, the pressure distribution on the
pressure surface is in good agreement with measurements. Sim-
ilarly, the predicted suction surface distribution at midspan
agrees well with the experimental distribution. The next figure
shows the predicted relative total pressure coefficient forward
and aft of the rotor as a function of span. The measured
distribution reported by Sharma et al. (1988) is also shown.
The magnitude of the predicted coefficient for the inlet flow
is higher than measured; however, the shape of the curve is
consistent with the data. The magnitude of the predicted exit
flow coefficient is also higher than measured. The influence
of the secondary vortices generated within the rotor passage
on the exit flow coefficient is more evident in the experimental
data than in the simulation result. The data of Sharma et al.
(1988) suggest that the secondary vortices exit the rotor at
approximately 30 and 70 percent of span. The local minimums
in the measured exit flow distribution at 25 and 85 percent of
span are a consequence of the velocity field induced by these
vortices. The location of the tip vortex as suggested by the
experimental data is significantly inboard of the location 90
percent span suggested by the simulation. The difference is
believed to be due to the tip leakage flow, which was not

-accounted for. It appears that this flow drives the tip secondary

vortex inward toward the hub.
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The simulation results place the hub secondary flow vortex
at 25 percent of span at the exit of the rotor, which is in good
agreement with measurements. This vortex, however, appears
to be more diffuse than measured, which may account for the
lack of a local minimum in the exit flow relative total pressure
coefficient at 25 percent of span.

The deviation from the design intent of the rotor relative
exit flow angle is shown in Fig. 5. This angle is plotted as a
function of span, with the solid curve representing the simu-
lation and the open symbols the measured data from Sharma
et al. (1988). The agreement between the two is reasonable,
with the exception of the tip region, where the result of ne-
glecting the tip leakage flow is quite evident. The noticeable
overturning of the flow near the endwalls and the subsequent
underturning in the region of midspan caused by the secondary
vortices is clearly seen in both the data and the prediction.
The flow physics that leads to this result appears to be well
captured.

Recently the authors became aware of data acquired under
A.F.O.S.R. sponsorship by United Technologies Research
Center that show the agreement between simulation and meas-
urement to be better than that indicated by Figs. 4 and 5. An
evaluation of the present results in light of these data will have
1o await its publication.

The next two figures are for the second vane. The first, Fig.
6, shows the predicted total pressure coefficient forward and
aft of the second vane as a function of span. Also shown are
the data from Sharma et al. (1988).

The predicted total pressure coefficients are lower than
measured, which, as previously noted, is the result of over-
estimating the loss produced by the first two blade rows. The
difference between these two curves is a measure of the loss
across the blade row. It too appears to be overestimated. With
the exception of the flow region strongly influenced by the tip
leakage flow from the rotor, the indicated trends agree with
the experiment. Judging by the shape of the incoming total
pressure field (either from the data or the prediction), it does
not appear that the secondary vortices generated by the rotor
would have a significant effect on the performance of the
second vane. The next figure, which shows the flow angle

entering and leaving the second vane relative to the design:

intent, leads to a far different conclusion. The large variation
in the inlet flow angle between 10 and 40 percent of span seen
in both the experimental data and prediction clearly is caused
by the rotor hub secondary vortex. The time-averaged signature
of this vortical structure is a region of shear whose vorticity
vector is nearly aligned with the incoming time-averaged ve-
locity field. The tip secondary vortex appears to generate a
similar structure; however, the measurements suggest it occurs
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inboard of that predicted. This entering shear flow causes the
second vane to behave aerodynamically differently than it
would in isolation.

The results shown in Fig. 7 indicate that the simulation
predictions are in reasonable agreement with data. The sim-
ulation captures the underturning of the flow near the endwalls,
and in the midspan region, the tendency for the flow to over-
turn. This behavior is partly due to the time-averaged shear
flow produced by the rotor secondary vortices.

The last figure shows the limiting streamline pattern asso-
ciated with the time-averaged flow adjacent to the second vane
pressure surface. Also shown is the corresponding flow visu-
alization result of Langston (1988). These results are presented
to show that the time-averaged effect of the unsteady vorticity
field entering a blade row has a major influence on the flow
field within the blade row. Near midspan, the incoming shear
flow causes a contraction of the streamlines, suggesting the
existence of a line of flow separation. Near both endwalls, the
time-averaged vorticity field entering the second vane interacts
with the secondary vortices generated within the vane to gen-
erate two lines of flow attachment. This flow pattern is far
more complicated than that for an isolated blade row and the
ability of the present model to capture its structure is very
encouraging. Finally, in closing it is suggested that the en-
hanced heat transfer observed at midspan of the suction surface
reported by Sharma et al. (1988) is caused by the secondary
vortices generated within the rotor.

Summary and Conclusion

Given the early state of the average passage model devel-
opment, the results presented in this report are very encour-
aging. The amount of empirical information used in the stage
and one-half turbine simulation.is considerably less than that
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required to achieve comparable results using today’s quasi-
three-dimensional flow models. The average passage flow
model also appears to be able to capture the physical features
of the secondary flow field generated within a multistage tur-
bine configuration. It appears that an accurate model of the

time-averaged vorticity field produced by the unsteady sec- .

ondary vorticity exiting a blade row is required to establish
the performance of the downstream blade row. The outlined
closure procedure, unlike some others that have been sug-
gested, insures that the unsteady vorticity field exiting a blade
row is consistent with exiting time-averaged vorticity field.
Hence, no spurious vorticity is produced as a result of coupling
one blade row to another.

The simulation of the stage and one-half turbine has shown
the complex nature of the endwall flow in a low-aspect-ratio
turbine. In the rotor, the secondary vortices generated within
the endwalls affect the flow at midspan. They cause the endwall
fluid to be deposited on the suction surface. This transport of
low-momentum fluid leads to significant spanwise mixing
across the axisymmetric stream surface. It is doubtful that an
endwall boundary layer model could be used to predict this
phenomenon.

There are numerous research activities that need to be pur-
sued to further the development of the average passage flow
model. Other configurations need to be simulated, including
multistage compressors and high-speed machinery. Grid gen-
erators need to be developed that are compatible with the
average passage model that can cluster grid points in regions
of high flow gradients that occur near and away from solid
surfaces. Algorithm improvements need to be made to speed
convergence. The sensitivity of design parameters to turbulence
modeling for the average passage model must be established.
Finally, experimental and analytical work in support of closure
modeling must be pursued to establish the models for gener-
alized Reynolds stresses and the associated energy correlations.
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Multi-Airfoil Névier—Stokes
Simulations of Turbine Rotor-
Stator Interaction

An accurate numerical analysis of the flows associated with rotor-stator configu-
rations in turbomachinery can be extremely helpful in optimizing the performance
of turbomachinery. In this study the unsteady, thin-layer, Navier-Stokes equations
in two spatial dimensions are solved on a system of patched and overlaid grids for
an axial-turbine rotor-stator configuration. The governing equations are solved using
a finite-difference, upwind algorithm that is set in an iterative, implicit framework.
Results are presented in the form of pressure contours, time-averaged pressures,
unsteady pressures, amplitudes, and phase. The numerical results are compared with
experimental data and the agreement is found to be good. The results are also
compared with those of an earlier study, which used only one rotor and one stator
airfoil. The current study uses multiple rotor and stator airfoils and a pitch ratio
that is much closer to the experimental ratio. Consequently, the results of this study
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are found to be closer to the experimental data.

Introduction

Flows within turbomachinery are generally unsteady in na-
ture and are therefore difficult to compute. The unsteadiness
is caused by (@) the interaction of the rotor airfoils with the
wakes and passage vortices generated by upstream airfoils, (b)
the relative motion of the rotors with respect to the stators
(potential effect), and (c) the shedding of vortices by the airfoils
because of blunt trailing edges. Computation of such flows is
further complicated by the relative motion between the rotor
and stator airfoils and the periodic transition of the flow from
laminar to turbulent. Nevertheless, a clear understanding of
the unsteady processes within turbomachinery is essential to
improving current design procedures.

Several calculations of cascade flow already exist in the
literature. These studies include two- and three-dimensional
calculations using both the Euler and Navier-Stokes equations.
While analyses of flows through isolated rows can be used to
study many of the fluid-dynamic phenomena in turboma-
chinery, such analyses do not yield any information regarding
the unsteadiness arising out of the interaction of moving and
stationary rows of airfoils. These interaction effects become
increasingly important as the distance between successive rows
is decreased. The experimental results of Dring et al. (1982)
show that the temporal pressure fluctuation near the leading
edge of the rotor airfoil can be as much as 72 percent of the
exit dynamic pressure when the axial gap is reduced to 15
percent of the chord length (for the operating conditions and
geometry chosen). Thus, the need is obvious for treating the
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rotor and stator airfoils as a system in cases where interaction
effects are predominant,

Rai (1987a) presents two-dimensional rotor-stator interac-
tion results for an axial turbine. The airfoil geometry and flow
conditions used are the same as those in the experiments of
Dring et al. (1982). The unsteady, thin-layer, Navier-Stokes
equations are solved in a time-accurate manner to obtain the
unsteady flow field associated with this configuration. The
governing equations are solved on a system of patched and
overlaid grids with information transfer from grid to grid tak-
ing place at the zonal boundaries. The numerically obtained
results are compared with the experimental results of Dring et
al. (1982). A good comparison between theory and experiment
is obtained in the case of time-averaged pressures on the rotor
and stator airfoils. Pressure amplitudes (corresponding to the
pressure variation in time) were found to compare reasonably
well with experiment, thereby indicating the validity of the
computed unsteady component of the flow.

In Rai (1987b) the approximation of two-dimensionality is
removed and fully three-dimensional airfoil geometries are
used. In addition, the hub, outer casing, and rotor tip clearance
are all included in the calculation. As in Rai (1987a), a system
of patched and overlaid grids is used to discretize the rather
complex geometry of the three-dimensional configuration. An
implicit, upwind third-order-accurate method is used in all the
patches (the calculation of Rai, 1987a, used a hybrid upwind/
central difference scheme near the surface boundaries). The
equations solved are the unsteady, thin-layer, Navier-Stokes
equations in three dimensions. As in Rai (1987a), time-aver-
aged airfoil surface pressures were found to compare well with
experiment, but numerically obtained pressure amplitudes were
only reasonably close to experimental data.
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One approximation that was made by Rai (1987a, 1987b)
was a rescaling of the rotor geometry. The experimental turbine
of Dring et al. (1982) has 22 airfoils in the stator row and 28
airfoils in the rotor row. Therefore an accurate calculation
would require a minimum of 25 airfoils (11 in the stator row
and 14 in the rotor row). In order to avoid the computational
expense involved in simulating the flow associated with 25
airfoils, the rotor airfoil was enlarged by a factor of 28/22,
keeping the pitch-to-chord ratio the same. It was then assumed
that there were 22 airfoils in the rotor row. This assumption
makes it possible to perform a calculation with only one rotor
and one stator, thus reducing computation time by more than
an order of magnitude. Whereas this approximation has little
or no effect on time-averaged pressure distributions, it does
affect the temporal variations of the flow variables. Far-field
acoustics are significantly altered when the configuration is
changed to have an equal number of rotor and stator airfoils.

This study presents results obtained using a new computer
program that can simulate flow in a stage with an unequal
number of rotor and stator airfoils. The calculations are per-
formed with the unsteady, thin-layer, Navier-Stokes equations
in two dimensions. The region of interest is discretized with
th: help of multiple patched and overlaid grids as in Rai (1987a,
1987b). Results in the form of time-averaged pressures, as well
as pressure amplitudes and phase for the rotor and stator
airfoils, are presented for both the one-rotor/one-stator and
the multirotor/multistator (three stator and four rotor airfoils)
cases. The time-averaged pressures are almost identical for the
two cases. However, a significant improvement is obtained in
pressure amplitude and phase for the multirotor/multistator
case. This improvement is to be expected because the ratio of
rotors to stators in the multi-airfoil calculation (4/3) is much
closer to the experimental value (28/22). The degree of rotor
rescaling required to keep the blockage effects the same is much
smaller.

The following sections describe the grids used in the cal-
culation, the integration method, the various boundary con-
ditions, and the results obtained.

Grid System for the Rotor-Stator Configuration

A combination of patched and overlaid grids is used to
discretize the regions surrounding the rotor-stator configu-
ration. The region can be discretized using only patched grids.
However, the number of zones required to solve the problem
accurately would be twice as many as that required when both
patched and overlaid grids are used in conjunction. Overlaid
grid calculations are difficult to make conservative at the
overlay boundaries. Since the current calculation is entirely
subsonic and free of flow discontinuities (the maximum Mach
number in the system is less than 0.35), physically meaningful
solutions can be obtained even with the use of the noncon-
servative form of the equations. Therefore nonconservative
overlap boundary conditions can be expected to yield accurate
solutions.

The airfoil geometry used in the current study is the same
as that used in the experimental investigation of Dring et al.
(1982). The geometry consists of 22 stator airfoils and 28 rotor
airfoils. An accurate simulation of this configuration would
require at least 11 stator airfoils and 14 rotor airfoils, thus
making the computation extremely expensive. Therefore the
rescaling strategy of Rai (1987a) was used to reduce the number
of airfoils. In the one-rotor/one-stator case this was done by
enlarging the rotor by the factor 28/22 and then assuming that
there were only 22 rotor airfoils. The pitch-to-chord ratio of
the rotor was not changed during the enlargement process.
Similarly, in the four-rotor/three-stator case it was assumed
that there were 21 stators and 28 rotors and the stator was
enlarged by the factor 22/21. Figure 1 shows the rotor-stator
geometry of Dring et al. (1982) at midspan.
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The multizone grid used to discretize the region consists of
four zones. Figure 2 shows the first two zones. The first zone
contains the stator and is discretized with an ‘O’ grid. The
second zone contains the rotor and is also discretized with an
“‘O” grid. The grids in these two zones were generated using
an elliptic grid generator of the type developed by Steger and
Sorenson (1979). Although the actual grids used for the cal-
culation are very dense near the airfoil surfaces (to resolve the
viscous effects), for the purpose of clarity Fig. 2 shows grids
in which the points are equispaced in the direction normal to
the airfoil surfaces.

Figure 3 shows zones 3 and 4. The grids for zones 3 and 4
were generated using an algebraic grid generator. Zone 3 con-
tains the inner stator zone and zone 4 contains the inner rotor
zone. In fact the inner boundary of zone 3 corresponds to the
outer boundary of zone 1 and similarly the inner boundary of
zone 4 corresponds to the outer boundary of zone 2. This
positioning of the inner and outer stator zones (and the inner
and outer rotor zones) facilitates information transfer between
these zones. The outer zones abut each other along the patch
boundary ABCD and slip past each other as the rotor airfoil
moves downward. It is advantageous to use a patch boundary
(as opposed to an area of overlay) where one system of grids
moves relative to another system of grids because both time
accuracy and conservation can be more easily controlled in
patched-grid calculations.
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Note in Fig. 3 that zones 3 and 4 do not align with each
other. The segment AB of zone 4 does not seem to align with
any part of the patch boundary of zone 3 and similarly the
segment CD of zone 3 does not seem to align with any part
of the patch boundary of zone 4. However, the periodicity
boundary condition can be used to solve this problem, the
result being that the segment AB is matched with the segment
CD. Figure 4 shows all the zones and the corresponding grids
used in the calculation. Figure 5§ shows a similar system of
grids for the four-rotor/three-stator calculation.

Numerical Methodology

The unsteady, thin-layer, Navier-Stokes equations in two
spatial dimensions are solved using an upwind finite-difference
algorithm.This algorithm is third-order accurate in space and
second-order accurate in time. It is set in an iterative, factored,
implicit framework wherein several iterations are performed
at each time step so that the fully implicit finite-difference
equations are solved. In this scheme, factorization and lin-
earization errors can be driven to zero at each step. Details
regarding the method can be found from Rai (1987b).

The use of multiple grids in simulating the flow over the
rotor-stator configuration shown in Fig. 4 results in several
computational boundaries. The boundary condition used at
each of these boundaries is briefly outlined below.

The inner boundaries of the two ‘O’ grids correspond to
the airfoil surfaces and, hence, the “‘no-slip’’ condition and
adiabatic wall conditions (or wall temperature) are imposed at
these boundaries. It should be noted that in the case of the
rotor airfoil no-slip does not imply zero absolute velocity at
the surface of the airfoil, but rather zero relative velocity. In

Journal of Turbomachinery

Fig. 5 Composite grid for the four-rotor/three-stator case

addition to the no-slip condition, the derivative of pressure in
the direction normal to the wall surface is set to zero.

The left boundary of zone 3 is a subsonic inlet boundary.
Three quantities need to be specified at this boundary. The
three chosen for this study are the Riemann invariants

2c
v—1 )
_ P
Ry= p
and the inlet flow angle, which in this case is equivalent to
Vinier =0 V)

In the above equations the quantities # and v are the velocities
in the x and y directions, respectively, p is the pressure, p is
the density, and ¢ the local speed of sound. The fourth quantity
(which is necessary to update the points on this boundary) is
also a Riemann invariant

2¢c
y—1
and is extrapolated from the interior of zone 3.

The calculation assumes that there are an infinite number
of rotor and stator airfoils in the positive and negative y di-
rections in Fig. 4. Hence, a simple periodicity boundary con-
dition is imposed on the upper and lower boundaries of zones
3 and 4. The implicit implementation of this boundary con-
dition is straightforward and will not be discussed here. In the
four-rotor/three-stator case periodicity is imposed over a dis-
tance in the y direction corresponding to three stator airfoils
(or four rotor airfoils). The lower boundary (outer stator zone)
of the first stator is assumed to have the same dependent
variable values as the upper boundary (outer stator zone) of
the third stator. A similar procedure is adopted for the rotor
row.

3)

R2=u—
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The right boundary of zone 4 is a subsonic exit boundary.
A simple implicit extrapolation procedure is used at this bound-
ary. The implicit extrapolation is followed by a postupdate
correction wherein the exit static pressure is specified. This
type of boundary condition reflects the pressure waves that
reach the exit boundary back into the system. The effect of
this reflective property of the exit boundary is discussed later.

A second exit boundary condition used in -this study is a
partially nonreflective procedure developed by Erdos et al.
(1977). This exit boundary condition is obtained from a quasi-
one-dimensional analysis and amounts to specifying the Rie-
mann invariant :

R2 =U v 1

at the exit boundary. This boundary condition is nonreflective
for waves or components of waves that are perpendicular to
the exit boundary (pressure variations in the x direction only)
and is reflective for waves that are parallel to the exit boundary
(pressure variations in the x direction only) and is reflective
for waves that are parallel to the exit boundary (pressure var-
iations in the y direction only). A shortcoming of this approach
is that the specification of the Reimann invariant R, does not
result in a good control over the mass flow rate through the
turbine. The correct pressure drop across the turbine has to
be obtained through an iterative process in which R, is varied
until the right average exit static pressure is obtained. It may
be possible to obtain a completely nonreflective boundary con-
dition by using a hybrid approach wherein the variation of R,
along the grid line imax — 1 is transferred to the grid line
imax.

The present calculation uses both patched grids (grids that
come together along common lines) and overlaid grids (grids
that have a common area of overlap). The region of overlay
is not clear from Fig. 4. Although information from zone 3
is transferred to zone 1 at the patch boundary (clearly seen in
Fig. 4), the information from zone 1 is transferred to zone 3
at grid points of zone 3 that lie in zone 1. This is possible
because the zone 3 grid exists under the zone 1 grid, though
this overlap is not shown in Fig. 4 for the purpose of clarity.
The boundary conditions used to transfer information from
grid to grid are discussed by Rai (1987b) and, in the interest
of brevity, are not included here.

Results

In this section the results obtained for the rotor-stator con-
figuration shown in Fig. 1 are presented. These results were
obtained by integrating the equations of motion and the bound-
ary conditions described earlier. Three iterations were per-
formed at each step. Approximately seven cycles (a cycle
corresponds to the motion of the rotor through an angle equal
to 2w/N where N is the number of stator airfoils) were required
to eliminate the initial transients and establish a solution that
was periodic in time. The calculation was performed at a con-
stant time step value of about 0.04 (this translates into 2000
time steps per cycle).

The dependent variables are nondimensionalized with re-
spect to the inlet pressure (p.,) and density (0.,). This yields

U =M, \/;

Vo =0 (inlet flow is axial)

where M,, is the inlet Mach number. The inlet Mach number
used for this calculation was 0.07. The Riemann invariants
that are prescribed at the inlet are determined using the de-
pendent variables defined above. The rotor velocity  is de-
termined from the desired flow coefficient u./w (0.78 in this
case) and the inlet axial velocity (u.,). Since the quantities that
are prescribed at the inlet boundary are the Riemann invariants
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Fig. 6 Time-averaged pressure distribution on the stator

and not the dependent variables themselves, the values of u,
v, p, and p obtained at the inlet, when the solution becomes
periodic in time, are different from those used to determine
the Riemann invariants. Hence, the rotor velocity needs to be
recomputed and the calculation needs to be continued for a
few more cycles (which then establishes a slightly different
time-periodic solution). This iterative process must be contin-
ued until the calculated flow coefficient is equal to the required
flow coefficient within certain limits of tolerance. The iterative
process was not carried out for the calculations presented in
this study because the right value of the rotor velocity (to obtain
a flow coefficient of 0.78) was known a priori from the two-
dimensional calculation of Rai (1987a).

The Reynolds number used for this calculation was 100,000/
in. This value of the Reynolds number is close to the experi-
mental value but not exactly so (because of the rescaling of
the rotor geometry). The Baldwin-Lomax model (Baldwin and
Lomax, 1978) was used to determine the eddy viscosity. The
kinematic viscosity was calculated using Sutherland’s law.

A One-Rotor/One-Stator Calculation. The first calculation
was performed assuming that there were equal numbers of
rotor and stator airfoils (22 of each). This permitted a cal-
culation with only one rotor and one stator airfoil. The rotor
airfoil was enlarged by the factor 28/22 to keep the blockage
effects the same as in the experiment. The pitch-to-chord ratio
was not changed during the enlargement process.

Figures 6-9 depict results obtained using a fixed exit, static-
pressure condition (totally reflective exit boundary condition).
Figure 6 shows the time-averaged pressure coefficient (C,) as
a function of the axial distance along the stator. The pressure
coefficient is defined as

Cp: pavgl_ (pt)inlel
5 pinlet“‘)2

where p,,, is the static pressure averaged over one cycle, (9,)inlet
is the average total pressure at the inlet, and p;,., is the average
density at the inlet. Clearly there is good agreement between
theory and experiment. A small separation bubble was found
on the pressure side of the stator in the numerical results. This
is seen as a sharp dip and rise of C, toward the trailing edge
on the pressure side. The experimental data also indicate such

¥
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Fig. 7 Time-averaged pressure distribution on the rotor

a separation. However, the magnitude of the pressure fluc-
tuation obtained numerically may be suspect because the tur-
bulence model was not tailored to yield accurate estimates of
the eddy viscosity in such regions.

Figure 7 shows the time-averaged C, distribution for the
rotor. The agreement is good except on the suction side of the
rotor toward the trailing edge (4.0 < x < 7.0). This difference
between the calculated and experimental results is because of
the three dimensionality of the real flow. The disappearance
of this difference between theory and experiment with a three-
dimensional calculation is documented by Rai (1987b). A small
separation bubble was found on the trailing edge circle as in
the case of the stator. The bubble is seen as a spatial fluctuation
in pressure.

The amplitude of the temporal pressure fluctuation is a
measure of the unsteadiness of the flow. Figure 8 shows pres-
sure amplitudes C‘p on the surface of the stator plotted as a
function of the axial distance. The quantity C, is defined as

ép= pnllax_pmin
5 pinlet""2
where pp.. and py;, are the maximum and minimum pressures
that occur over a cycle at a given point. The numerical am-
plitude distribution shows most of the qualitative features that
are found in the experimental results. However, the numerical
data seem to form a wider large amplitude region than that
found experimentally. In addition, the predicted peak is to the
left of the experimental peak, and the pressure amplitude min-
imum on the suction side seen in the experimental results (x
= —2.4) is absent in the calculated results. These distortions
occur because of the following reasons.

The current calculation uses an equal number of stator and
rotor airfoils. An acoustic analysis (Tyler and Sofrin, 1962)
shows that in such a situation every harmonic in time (if one

were to perform a Fourier decomposition of the unsteady pres-,

sures in the region between the stator and rotor) results in a
propagating wave in the axial direction. In the experimental
configuration there are 22 stator airfoils and 28 rotor airfoils.
This results in only the higher harmonics in time giving rise
to propagating waves; the lower harmonics give rise to decaying
signals. Since the higher harmonics are much smaller in mag-
nitude, the unsteady pressures that reach the exit boundary
are much smaller in the case of the experiment. The reflective
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exit boundary condition used in the calculation reflects the
relatively large calculated pressure waves that reach the exit
boundary back into the system, thus distorting the unsteady
pressures everywhere in the system.

Figure 9 shows the C, distribution on the rotor. The agree-
ment between theory and experiment is not as good as in the
case of the stator. The suction side amplitude peak is shifted
to the left of the experimental one. A sizable portion of the
pressure side peak toward the trailing edge is due to strong
pressure waves being reflected back from the exit boundary.
The stator pressure amplitude distributions tend to be predicted
better because the rotor airfoils partially shield the stator air-
foils from the reflected pressure waves (reflected off the exit
boundary). However, the numerical data shown in Fig. 9 do
predict all the qualitative features shown by the experiment.

The problem can be solved only to a limited extent by de-
veloping a nonreflective boundary condition. This is because
the pressure signals being generated by the one-rotor/one-
stator system are different from those that would be generated
by a multirotor/multistator system. The right approach is to
perform a multirotor/multistator calculation (the reflective

JULY 1990, Vol. 112/ 381
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Fig. 11 Pressure amplitude distribution on the rotor (nonreflective
boundary condition of Erdos et al., 1977)

properties of the exit boundary condition will be relatively less
important for more realistic rotor and stator airfoil counts).

Figure 10 shows the pressure amplitude curve obtained with
a nonreflective boundary condition of the type developed by
Erdos (1977). This boundary condition permits plane waves
(pressure waves that are one-dimensional, that is, pressure
variations only in the x direction) to exit the system without
distortion. According to the theory of Tyler and Sofrin (1962),
most of the unsteadiness can be expected to be one-dimensional
and aligned with the x axis in the one-rotor/one-stator case.
Hence, this boundary condition should be sufficient for the
one-rotor/one-stator case. However, it is clear from Fig. 10
that the improvement in pressure amplitudes with the use of
the nonreflective boundary condition is marginal. In fact the
difference between theory and experiment is greater on the
pressure side in Fig. 10 than it is in Fig. 8. Figure 11 shows
the pressure amplitude variation for the rotor obtained with
the nonreflective exit boundary condition. Whereas the use of
the nonreflective exit boundary condition alters the rotor pres-
sure amplitudes considerably, the numerical results of Fig. 11
are not any closer to the experimental data than in Fig. 9. This
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Fig. 13 Time-averaged pressure distribution on the rotor (four-rotor/
three-stator case)

calculation indicates that nonreflective boundary conditions
alone cannot yield the right pressure amplitudes. It is important
that the mechanism that generates the unsteady pressures, that
is, the rotor-stator geometry with the right airfoil count, needs
to be used in order to obtain numerical results that are close
to the experimental data.

A Four-Rotor/Three-Stator Calculation. The next calcula-
tion was performed with three stator airfoils and four rotor
airfoils. The resulting ratio of rotor to stator airfoils (4/3) is
much closer to the experimental ratio (28/22) than is the ratio
obtained for the one-rotor/one-stator case. Consequently the
amount of rescaling is also much smaller. In addition, it can
be shown that only the higher harmonics result in propagating
pressure signals. The lower harmonics result in decaying pres-
sure signals. Since the higher harmonics are much smaller in
magnitude than the lower harmonics, the pressure signals
reaching the exit boundary can also be expected to be much
smaller in magnitude. Hence the reflective properties of the
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exit boundary condition play a smaller role in determining the
unsteady pressures on the airfoils.

Figures 12 and 13 show the time-averaged pressure distri-
butions on the stator and rotor airfoils, respectively. The agree-
ment between theory and experiment is good and of the same
quality as that obtained in the one-rotor/one-stator case. Fig-
ure 14 shows the pressure amplitude distribution obtained on
the stator. Clearly there is a marked improvement over the
numerical results depicted in Fig. 8. The wider large amplitude
region in Fig. 8 now almost exactly matches the experimental
data. The positions of the experimental and numerical peaks
are in much better agreement. The numerical data show an
amplitude minimum on the suction side, as do the experimental
data. However, there is some difference between theory and
experiment on the suction side of the stator and this may be,
once again, because of the small difference between experi-
mental and numerical rotor/stator pitch ratios or because of
three-dimensional effects. :

Figure 15 shows pressure amplitudes on the rotor. As in the
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case of the stator, the numerical results for the four-rotor/
three-stator case are considerably closer to the experimental
results than those obtained for the one-rotor/one-stator case
(Fig. 9). The pressure side peak of Fig. 9 has decreased in
magnitude, resulting in much better comparisons between the-
ory and experiment. Similar improvements can also be seen
on the suction side of the rotor. However, just as in the case
of the stator, there are still some quantitative differences be-
tween theory and experiment.

The pressure amplitude variation along the surfaces of the
airfoils is one measure of the unsteady component of the flow.
A second, and more sensitive, measure is the phase of the
pressure variation in time as a function of the position on the
airfoil surfaces. Figure 16 shows the time at which a pressure
minimum occurs on the stator suction surface. The initial po-
sition (¢ = 0) for the rotor and stator is shown in Fig. 1 and
corresponds to the instant when the stator trailing edge circle
center is in line with the rotor leading edge circle. The figure
indicates a low pressure peak traveling from about 40 percent
chord toward the trailing edge (L1) and a second low pressure
peak traveling upstream (L2). This phenomenon is described
in greater detail by Dring et al. (1982). In general the multi-
rotor/multistator calculation is seen to be much closer to the
experimental data,.

Figures 17-20 show pressure contours at various time in-
stants for the four-rotor/three-stator configuration. These fig-
ures clearly show the main features of the time-averaged
pressure distributions of Figs. 12 and 13, namely, the expansion
and subsequent recompression of the flow on the suction side
of the stator and rotor, and the almost constant pressure region
followed by an expansion on the pressure side of the stator
and rotor. Unlike the one-rotor/one-stator results of Rai
(1987a) the pressures in the different rotor and stator channels
are out of phase. These figures also show small-amplitude,
high-frequency oscillations superimposed on the contours.
These oscillations are caused by the tendency of the continuity,
momentum, and energy equations to decouple at low Mach
numbers and will disappear for calculations at higher Mach
numbers. A comparison of the contours presented in Figs. 17-
20 and those of Rai (1987a) shows a considerable reduction in
the amount of oscillations in the present study. This improve-
ment in the quality of the pressure contours is believed to be
due to the integration method used in this study (high-order-
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Fig. 18 Pressure contours {t = 0.25)

accurate upwind method instead of a hybrid central/upwind
scheme).

Summary

An unsteady, thin-layer, Navier-Stokes code has been de-
veloped to study two-dimensional rotor-stator interaction
problems. The code uses patched and overlaid grids that move
relative to each other to simulate the motion of the rotor airfoils
with respect to the stator airfoils. The integration method is
a spatially third-order accurate and temporally second-order
accurate, upwind finite-difference scheme that is set in an
iterative implicit framework. The code was used to simulate
subsonic flow past a turbine stage for which considerable data
exist.

The code permits the use of an arbitrary number of rotor
and stator airfoils. Numerical results were obtained for a one-
rotor/one-stator configuration and for a four-rotor/three-sta-
tor configuration. The four-rotor/three-stator case had a pitch
ratio much closer to the experimental one. Results in the form
of time-averaged surface pressures, surface pressure ampli-
tudes (corresponding to the pressure fluctuations in time), pres-
sure phase relationships, and instantaneous passage pressure
contours are presented for the two configurations. The time-
averaged surface pressures for the two configurations are al-
most identical and agree well with the experimental data. The

384 / Vol. 112, JULY 1990

Fig. 20 Pressure contours (f = 0.75)

surface pressure amplitudes and phase predicted by the four-
rotor/three-stator configuration are found to agree much bet-
ter with the experimental data than do the calculated data
obtained with the one-rotor/one-stator configuration.
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Analyses to Incompressible
Turbomachinery Flows

Conventional time-marching flow solvers perform poorly when integrating com-
pressible flow equations at low Mach number levels. This is shown to be due to un-
Javorable interaction between long-wavelength errors and the inflow and outflow

boundaries. Chorin’s method of artificial compressibility is adopted to extend the
range of Denton’s inviscid flow solver and Dawes’ three-dimensional Navier-Stokes
solver to zero Mach number flows. The paper makes a new contribution by showing
how to choose the artificial acoustic speed systematically to optimize convergence
rate with regard to the error wave-boundary interactions. Applications to a turbine
rotor and generic water pump geometry are presented.

Introduction

An important class of analysis tools for the three-
dimensional flows in turbomachinery solves, by time march-
ing, the compressible equations of motion expressed in general
form as

P CELL [ Continuity

| -

—-| e¥ +Y, FLUX |Momentum | =0 0
oE SUMS | Energy

The major cost in producing a robust, reliable design tool is
not in writing the code itself but in its validation. This cost is
high in part because many different comparisons must be
made between predictions and measurement for many dif-
ferent configurations. Another reason the validation cost is
high is that realistic, high-speed experiments are expensive to
conduct. It would be attractive to use relatively inexpensive
low-speed (i.e., low Mach number) experiments to help
validate the time-marching codes. However, this can often
lead to irritating problems with the codes themselves, which
either ‘“‘do not run’ at low Mach numbers or suffer severe
reduction in convergence rate.

There is nothing wrong, physically, with the unsteady com-
pressible equations of motion (1) at low Mach numbers. After
all, mass, momentum, and energy are always conserved. The
numerical problems associated with time-marching algorithms
at low Mach numbers are threefold. First, extra precision must
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be used as the density variations become smaller (maybe even
128 bit words). Second, the Courant-Freidrichs-Lewy time
step limit becomes increasingly restrictive as the acoustic
waves dominate the convective waves so that an increasing
number of time steps is required to reach a given physical time
(i.e., to converge). Third, most significantly, the long-
wavelength errors present in the solution find increasing dif-
ficulty interacting with the inflow and outflow boundaries as
the Mach number levels become smaller. The decay of the
long-wavelength errors becomes increasingly retarded and
convergence is slowed or even prevented.

The purpose of this paper is first to describe and quantify
the poor interaction between long-wavelength errors and
boundaries and the effect on convergence rate. Then Chorin’s
(1967) well-known method of artificial compressibility will be
adopted as a means of extending the range of applicability of
two time-marching codes (Dawes, 1986; Denton, 1986) to low
Mach numbers. The key contributions of the paper will be to
remove the previous ad hoc guess work of a suitable artificial
acoustic speed by optimizing this speed with respect to long-
wavelength error-boundary interaction. A range of realistic
applications will be presented.

Low Mach Number Convergence Properties

In all time-marching algorithms solving compressible equa-
tions of motion, the time step size and artificial viscosity
magnitudes affect only the local rate of decay of errors. Long-
term convergence rate is dominated by long-wavelength er-
rors, which travel up and down the flow domain interacting
with the inflow and outflow boundaries. We may study this
essentially one-dimensional process with the one-dimensional
Euler equations written in isentropic quasi-linear form:
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This system has eigenvalues A, and corresponding Riemann in-
variants e

N=u+a,
N =u-—a,

e, =6p + padu
e, =6p—padu 3

Information propagates in the numerical simulation by
downstream running waves e;, with speed \,, and upstream
waves e, at speed \,. The boundary conditions constrain par-
ticular linear combinations of e, and e,. The outflow bound-
ary condition of constant static pressure, 6p =0, is equivalent
to setting le, |= — le, | at the outflow boundary. The inflow
boundary condition of constant stagnation pressure
op+pubu=0, is easily shown to be equivalent to setting
le, {=—[(1-M)/(1+M)] le, |, where M=u/a, at the inflow
boundary. This information flow is illustrated in Fig. 1. More
details are given by Walker (1988).

The key deduction from the use of this particular combina-
tion of inflow and outflow boundary conditions is that a given
error wave, initially running downstream (say) has its
magnitude modified by a factor of (1 —M)/(1 + M) after one
reflection from the outflow boundary and one reflection from
the inflow boundary. Consequently, at low Mach numbers the
long-wavelength errors tend not to decay (not at all in the limit
M =0) and so convergence is impeded (or prevented). It must
be stressed again that time step size, artificial viscosity, and
even the algorithm itself can damp errors in the solution only
locally and that it is the long-wavelength errors, which are ac-
curately convected by any solution method, which can
dominate ultimate convergence rate.

To illustrate the deterioration of convergence rate with
Mach number level, Fig. 2 shows plots obtained from Den-
ton’s well-known method for a low reaction turbine rotor
blade (impulse bucket). Below a Mach number level of around
0.1 convergence is dramatically slowed.

Application of Artificial Compressibility

To solve for essentially incompressible flow via time-
marching strategies (rather than adopting complicated
pressure correction methodologies) Chorin (1967) introduced
the idea of artificial compressibility. The equation of mass
continuity is used to drive pressure (rather than density) via an
artificial acoustic speed V8

Sp=Rp “@
The ‘“‘compressible’’ equations become
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(Note that there is now no coupling between the energy equa-
tion and the flow dynamics.) At convergence, the time
derivative term is zero, and so the desired incompressible flux
balances are recovered. Any time-marching code can be
adapted to solve these equations. The approach is only prac-
tical for steady flows, since to compute accurate unsteady
flow, 8 must be very large to force divei =0 during the tran-
sients. This was Chorin’s original motivation and choice, but
it simply reproduces one of the numerical problems we are try-
ing to avoid (excessive ‘‘stiffness’’).

The choice of the acoustic speed, 8, is critical and until now
has been chosen on ad hoc grounds. Rizzi et al. (1985) used
values of 8/u? in the range 1 to 5. Kwak et al. (1984) defined
upper and lower values of 8/u? dependent on the geometry
and the Reynolds number in the range 0.1 to 10. Choi et al.
(1984) and Michelossi et al. (1986) claimed that numerical ex-
periments showed 3/u? around unity was optimal in terms of
convergence rate. The principal contribution of this paper is to
show how to choose § rationally based on optimizing the in-
teraction of long-wavelength errors with the inflow and
outflow boundaries and thus maximizing convergence rate.

In a similar manner to the previous section we consider the
one-dimensional artificial compressibility equations of motion
in quasi-linear form (with p = const) for zero Mach numbers

—_ + — =0 (6)
ot | oy 12u| 9% | pu

This system has eigenvalues A and corresponding Riemann in-
variants e .
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N =u+vu* +8, e, =8p+pvul+8 éu

N=u—~Vu+8, e, =op—pNul+f du )
Consider an initial error wave e; running downstream. At a
fixed static pressure outflow boundary a wave must be
generated running upstream with magnitude le, = — le; | so
that §p=0. Similarly, this wave must reflect from the inflow
boundary of fixed stagnation pressure, ép+poubu=0 as a
wave in e, with magnitude le; |=— le, Ix[(Vu?+8-u)/
(Vu? + B8 +u)]. Thus the “loop gain,”” L, for a single cycle
of such wave-boundary interactions is

-1
L= ad I where a=,/1+ 52 8)

ot u

This represents the factor by which the magnitude of an ini-
tially downstream running error wave is modified by one
reflection from a fixed static pressure outflow boundary and
one reflection from the fixed stagnation pressure inflow
boundary.

Now, if Cis the CFL number used for the time marching, /,
the length of the computational domain, and Ax the mesh
spacing, then the stable time step is

At=CAx/\, ©)

(since Ix; 1> I\, ). The number of time steps for a wave to
travel from inflow to outflow is

n,=1./Chx (10)
and from outflow back to inflow it is
ny=(—N /NI /CAx an

(note that \, <0). Therefore the total number of time steps for
a complete loop N=n, +n, is

N=X(\,—N\)/N\, where X=1,/CAx (12)
Substitution for A, and \, gives
N=2aX/(a—1) (13)

Thus, the amplification of the error wave magnitude per time
step, v, is

a—1 > (a—1)/2aX

p= VN~ (
a+1

(14

It can be shown (Walker, 1988) that the minimum of » occurs
at o =1.7719 (i.e., maximum damping of error wave) and that
this value is independent of x (i.e., independent of CFL
chosen). Hence, the optimum artificial acoustic speed is

Bopt = 2.1395u> (15)

A rather more general analysis (Walker, 1988) without the
assumption of zero Mach number replaces equation (6) by

L) i ) L
_J_ + — =0 (16)
ot | pu 1-M2 2u | 9% | pu

with M the Mach number and shows the optimum artificial
acoustic speed to be

Bop: =2.1395u2/(1 — M?) a7

(In this nonzero Mach number context, the application of ar-
tificial compressibility is equivalent to assuming a modified
equation of state for the gas: p=8p; this effectively permits a
modified and optimal time integration path.)

As discussed earlier, this is only valid for steady flows
(where diveu=0 by virtue of dp/dt=0, rather than 88— o).
This is also only valid for wholly subsonic flow since wave
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Fig. 4 Convergence rate of the Denton code with artificial com-
pressibility for the impulse bucket

propagation is, of course, quite different in supersonic (or
transonic) flow.

Plots of », the error wave damping per time step, as a func-
tion of 3/u? for varying Mach numbers are shown in Fig. 3.
The significant result is the unexpectedly narrow range over
which B8/u? can be allowed to vary and still produce optimal
convergence rate.
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Numerical Results

Denton (1986) Inviscid Code. The artificial compressibili-
ty method outlined above was programmed into Denton’s
standard time-marching code and applied to the impulse
bucket referred to earlier. The value of § was computed locally
at each mesh point. The convergence history for a range of
Mach numbers is shown in Fig. 4. The convergence rate is
essentially identical for all Mach numbers down to zero; this
should be compared to the progressive deterioration of con-
vergence rate for the same blade with the standard code in Fig.
2. Blade surface pressures are compared in Fig. 5 for the
standard code and the modified code at a Mach number level
of 0.2. The agreement is satisfactory. Hence at low Mach
numbers the artificial compressibility approach permits far
more economical solutions: first because the convergence rate
is maintained, minimizing the required time steps; second
because the absence of the energy equation reduces the cpu
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time per point per time step by 20 percent (in three
dimensions).

Dawes (1986) Navier-Stokes Code. The artificial com-
pressibility method is equally applicable to the Navier-Stokes
equations (since viscosity affects only local propagation of in-
formation and so does not alter the optimum value of
described earlier). Accordingly, an incompressible version was
produced of the Dawes (1986) three-dimensional
Navier-Stokes solver with the values of § computed locally
from equation (15). The code no longer solves the unnecessary
energy equation (so saving 20 percent on computer time) but
otherwise remains standard as described by Dawes (1986), in-
cluding the use of multigrid. There is no adverse interaction
between the multigrid and long-wavelength error propagation;
in fact quite the opposite. The role of multigrid is really to
make long waves look like shorter ones (on an appropriate
mesh) to increase the spectrum of waves damped efficiently by
the algorithm itself. Thus the more efficient transport of the
long-wavelength errors by the artificial compressibility scheme
simply enhances this basic process. Sample applications are
presented here for a 50 percent reaction axial turbine rotor
blade and a generic water pump geometry.

50 Percent Reaction Axial Turbine Rotor. Results are
presented for the rotor installed as part of a stage in a large
low-speed air turbine at the Whittle Laboratory (Hodson,
1983). The stage data are:

Stator Rotor
Rex 107 4.2 3.2
Loading (stage)=Aho/Um2 - 1
mpm e 530
Inlet axial velocity, m/s 17.95 -
Flow coefficient=Ux/Um --- 0.495
Blade inlet angle, deg 0 0
Blade exit angle, deg 65 —65
Chord, mm 152.4 114.3
Pitch-chord ratio 0.742 0.698
Aspect ratio 1.5 2.0
Mean radius 0.647 0.647
Stagger, deg 44.5 4,45
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Fig. 10 Generic water pump; 19 x 97 x 19 mesh

The (relatively coarse) 17x51x17 computational mesh is
shown in Fig. 6. For contractual reasons only midspan
geometry (and hence results) can be presented; the simulation
was, however, fully three dimensional. The convergence
history is plotted in Fig. 7; convergence to machine zero (as
evidenced by the flat and oscillatory rms residue asymptote) is
essentially achieved after 1600 time steps (with one level of
multigrid). Figure 8 shows the predicted midspan velocities
and relative stagnation pressures. Figure 9 compares measured
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Fig. 11 Water pump convergence history

and predicted midspan blade surface pressure distributions;
the agreement is satisfactory. The rotor relative losses com-
pare as follows:

Rotor relative loss

coefficient
ApO/1/2 pvky, rel,
percent
Predicted 2.4
Measured in stage 2.6
Measured in cascade 1.8

(midspan section)

The agreement is acceptable for such a coarse mesh.

Generic Water Pump Geometry. The 19%X93x 19 mesh
for a generic water pump geometry is shown in Fig. 10. The
main geometric parameters are:

Re 5%10°

Density, kg/m?3 1000
Hub radius LE, mm 94.3
Hub radius TE, mm 201.2
Shroud radius LE, mm 140.0
Shroud radius TE, mm  201.2
rpm 1000
Static/total pressure

rise =p, /Py 2.5

The convergence history is shown in Fig. 11; the rms residue
decreases by four orders of magnitude in 2000 steps (one level
of multigrid). Figures 12 (velocity contours), 13 (velocity vec-
tors), and 14 (relative stagnation pressure) show the expected
flow features, in particular the strong secondary flows leading
to the development of jet-wake structure.
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Fig. 14 Predicted relative stagnation pressure

Concluding Remarks

The poor performance of conventional time-marching
solvers of the compressible flow equations at low Mach
numbers has been analyzed and shown to be caused by the in-
teraction of long-wavelength error waves with the inflow and
outflow boundaries. Chorin’s artificial compressibility
method has been adopted to extend the range of applicability
of two conventional flow solvers down to zero Mach number.
This paper makes a new contribution to the literature by show-
ing how to choose the artificial acoustic speed systematically
to optimize convergence rate. Applications to a turbine rotor
and a generic water pump geometry produced encouraging
results.
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Three-Dimensional Solutions for
Inviscid Incompressible Flow in
Turbomachines

S. Abdallah A primitive variable formulation is used for the solution of the incompressible Euler
eq.ua.tion. Ir.z particular, the pressure Poisson equation approach using a nonstaggered
C. F. Smith grid is considered. In this approach, the velocity field is calculated from the unsteady

momentum equation by marching in time. The continuity equation is replaced by
a Poisson-type equation for the pressure with Neumann boundary conditions. A
consistent finite-difference method, which insures the satisfaction of a compatibility
condition necessary for convergence, is used in the solution of the pressure equation
on a nonstaggered grid. Numerical solutions of the momentum equations are ob-
tained using the second-order upwind differencing scheme, while the pressure Poisson
equation is solved using the line successive overrelaxation method. Three turbo-
machinery rotors are tested to validate the numerical procedure. The three rotor
blades have been designed to have similar loading distributions but different amounts
of dihedral. Numerical solutions are obtained and compared with experimental data
in terms of the velocity components and exit swirl angles. The computed results are

Applied Research Laboratory,
Penn State University,
State College, PA 16804

in good agreement with the experimental data.

Introduction

The flow through a turbomachinery blade passage is very
complex. The flow can be dominated by three-dimensional
effects, such as secondary flows caused by the vorticity dis-
tribution of the incoming boundary layer. Quasi-three-dimen-
sional methods do not account for these effects adequately
(Wu, 1951; Katsanis, 1973; Novak, 1977; Abdallah et al.,
1988). An improved approach to these flow problems is the
solution of the three-dimensional Euler equation. Several for-
mulations have been developed for the solution of the incom-
pressible Euler equation. These methods can be classified into
two groups: primitive variable and nonprimitive variable for-
mulations.

The nonprimitive variable formulations are based upon in-
troducing new dependent variables other than velocity and
pressure. Under this category, the vector potential function
method, the two stream function method, and the vorticity-
velocity method can be classified. In the first two methods,
the velocity is expressed as the curl of a vector potential func-
tion and the cross product of the gradient of two stream func-
tions, respectively. These expressions satisfy the continuity

equation identically. The substitution of the velocity expres--

sions in the definition of vorticity gives three second-order
elliptic differential equations. The major drawback of these
formulations is the difficulty in determining boundary con-
ditions for the new dependent variables. In two dimensions,

Contributed by the International Gas Turbine Institute and presented at the
34th International Gas Turbine and Aeroengine Congress and Exhibition,
Toronto, Ontario, Canada, June 4-8, 1989. Manuscript received at ASME Head-
quarters January 23, 1989. Paper No. 89-GT-140.
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both formulations reduce to the well-known vorticity-stream
function formulation. In the vorticity-velocity formulation,
three second-order elliptic differential equations for the ve-
locity components are obtained from the continuity and the
definition of vorticity equations. It should be mentioned here
that only derivatives of the continuity equation are satisfied
in the resulting governing equations. In all nonprimitive vari-
able formulations, the vorticity components are computed from
the vorticity-transport equations. The vorticity-transport equa-
tions are derived from the momentum equation by eliminating
the pressure. After the velocity field is computed, the pressure
can be recovered from a Poisson-type equation with Neumann
boundary conditions (Roache, 1982).

The nonprimitive variable formulations are inefficient be-
cause they solve a large number of differential equations (about
twice the number as that of the primitive variable formulation
for three-dimensional flows) and this becomes excessively ex-
pensive, On the other hand, the primitive-variable formula-
tions solve the Euler equations directly. Also, the boundary
conditions are simpler to implement in the primitive variable
formulation. Two formulations that are well known for solving
the incompressible Euler equations in primitive variables are
the artificial compressibility method (Kwak and Chakravarthy,
1986; Choi and Merkle, 1984) and the pressure Poisson equa-
tion approach (Harlow and Welch, 1965). In the former, a
time-dependent pressure term is added to the continuity equa-
tion. The continuity equation is then coupled with the mo-
mentum equations and the system is solved with an implicit
procedure (Beam and Warming, 1978).
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In the pressure Poisson equation approach, the momentum
equations are solved for the velocity field by marching in time.
The continuity equation is replaced by a Poisson-type equation
for the pressure. Solutions for the pressure Poisson equation
exist only if a compatibility condition is satisfied. This con-
dition is automatically satisfied on staggered grids (Harlow
and Welch, 1965); however, this is not the case on nonstaggered
grids. A consistent finite-difference approach is developed by
Abdallah (1987a), which satisfies the compatibility condition
on nonstaggered grids. This method is extended here to three-
dimensional curvilinear coordinates. Details of the analysis and
numerical solutions for three rotors are presented. The nu-
merical results are compared to experimental data and the
comparisons are in good agreement.

Governing Equations

The continuity and momentum equations for inviscid in-
compressible flow are written in rotating cylindrical coordi-
nates 7, 6, and z as shown below.

Continuity Equation:

i) d a

*(rwr)+ (Wo)+ (rW)— Q)
Momentum Equation:

80" | 9B’ OF' 3G’

ot Tar Ta T e TH @

where
Ql = (I'W,., r'wy, rwz)T

= (rw?, rw,wp, rw,w,) T
F' = (rw,wy, rwi, rw,wg)”

G’ = (rw,w,, rw,wg, rwd)T

oP ] oP\ |7
2O o
H = [(V r 6r>’ <ww9+2wrw+ 60> (r BZ)J

(2a)

The relative velocity components w,, wy, and w, are in the
directions r, 0, and z, respectively, P is the static pressure

Nomenclature

divided by the density, and w is the wheel speed. The superscript
T indicates the transpose matrix.
The absolute tangential velocity component V} is given by
Vo=wg+w X r @b)
Numerical solutions for equations (1) and (2) using standard
compressible flow techniques (Beam and Warming, 1978) are
not possible because of the absence of the density time deriv-
ative terms from equation (1). In the present study, the con-
tinuity equation (1) is replaced by a Poisson-type equation for
the pressure. This équations derived from the divergence of
the momentum equation.

Pressure Poisson Equation
The divergence of the momentum equation is given by

8 (8P\ 14 (aP\ 3 ( aP ,
or (’ 6r> 7 86 (6—0>+6—z( az> A

3 14 3 )
[ar(rwf) +- ae(rw,w‘;) +az(rw,wz)—— V(,}

where

]
J T or

19 14 a
+;—5 ( ww9)+—~(rw9) + Z(rwzw(,)+w,wg+2wrw,

’

aia 19 a oD
+az[6r(rw’w“) +; %(rWng) +52(rwf)] +—a—t— (3a)

and

a 1 6 0
D’ =5 (rw,)+ (rwo) + (rw ) (3b)
The time derivative term in equation (3a) is approximated
as follows:
dD’  D'(t+At)-D'(t)
at At

In order to satisfy the continuity equation (1), D’ (¢+ Af) is
set equal to zero in equation (4) (Harlo and Welch, 1965); thus

@

D, F =
N zZ

equation

terms in momen-

tum equation

computational in-

E,F,G H =

Lk =

dices for the &, 1, W =

and ¢ directions,
respectively
Jacobian for coor-
dinate transforma-
tion

= unit normal vector
static pressure di-
vided by density

= primitive variable
matrix in curvilin-
ear coordinates
radial, tangential,
and axial direc-
tions, respectively

<«
Il

0 v
Il

r,0,z =
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source terms in { =
pressure Poisson Vo, V, =

VINF =

Wry Wy, W, =

£ n § =
AE, A, AS =

o, B, 0, p € =

time
tangential and ax- At = time increment
ial absolute veloci- w = angular velocity

ties, respectively

free-stream veloc-  Subscripts
ity e, w = east (j+1/2) and
relative velocity west (i —1/2) di-
vector rections, respec-
radial, tangential, tively
and axial relative r, 0, z = radial, tangential,
velocities, respec- and axial direc-
tively tions, respectively
computational do- .

Superscripts

main coordinates Lo
increments of the T = transpose indicator

computational co- & m, { = computational do-

ordinates main coordinate

metric terms in directions

transformed Pres- " = refers to terms in

sure Poisson cylindrical coordi-
nates

Equation
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0" D)

ot At

(4a)
where At is the time marching step.

Boundary Conditions

1 Velocity. For inviscid flow, the no-flux condition is
satisfied at the solid boundaries

Weil =0 )
where 7 is the unit vector normal to the boundary.

2 Pressure. Neumann boundary conditions are obtained
for the pressure by using the normal component of the mo-
mentum equation at all boundaries.

Compatibility Condition

Solutions for the pressure Poisson equation (3) with Neu-
mann boundary conditions exist only if a compatibility con-
dition is satisfied. This condition results from Green’s theorem

SS —~ f'rdrdfdz = <§> — dS 6)

where n is the outward unit vector normal to the boundary
contour S enclosing the volume of the solution domain.

The integral constraint (6) is automatically satisfied when
using staggered grids (Harlow and Welch, 1965). In order to
satisfy the compatibility condition on nonstaggered grids, the
consistent finite-difference method (Abdallah, 1987a, 1987b)
is used in the numerical solutions.

The governing equations (2) and (3) are written in general
curvilinear coordinates £(r, 8, 2), 9(r, 8, z), and {(r, 0, ) using
the chain rule. They are given by:

Momentum Equation:

aQ OJE I9F IG

at+ag+an+5?=H %)

where
Q—- (W, e, wp)T (7a)
1 & 3 T
:} (WEW,., WWy, W wz) (7b)
1 T
F=} (wrw,, Wwy, WTw,) (7¢)
I T
G=} (Wiw,, wiw,, wiw,) (7d)

H

i

1 1 1
}|:< VH_PEEr n77r P(fr)y —;(w,w9+2wrw,

T
+P556+Pn’70+1’rf0),—Psfz+P7mz+Prs“z)] (Te)

The contravariant velocity components wé, w7, and w! de-
fined in terms of the cylindrical velocity components are

WE=WeVE Wi=weVy, w=WweV{ 8)
The Jacobian of transformation J is
a(r, 0, z)

J=1/ —— )
9%, 0, 9

In all equations above, the subscripts 7, 8, z refer to partial
derivatives when associated with pressure P-and the curvilinear
coordinates £, 6, and ¢.
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The pressure Poisson equation in generalized coordinates is
given by

(OIPE +BP,+vPy) + (ﬁPg +0oP, +uPy)

3
9
ta (WPe+ uPy 4 cPy) = —f (10)
where
L seve gt veew
a—J ’ _J E N
—l Yn.vy¢ —1 VneV
'Y—J n s U_J n B
L VeV L ViV
p=7 Ve VE e=2
] d
f=7- (S~ VS)+ = (S Vn)+— (Sev,)— D(t) (10a)
ot a¢
The vector function § is defined by
S 3 [ wiw, N 3 (wiw, 4 wfw Ug
T lat J o\ J a; o
3 [ wiw, 3 [ wiwy 3 (wiwg
a¢ J an J a¢ J
+; (W, wp + 2wrw,),
9 [wEw, N 3 (wiw, N 9 (wiw, (108)
dE J an J ac J
The dilatation term D is
3 [wt a [ w" 3 (w
== {— — = — {— 10
2% (J) "o (J) " ar<1{> (109

Boundary Conditions

1 Velocity. Boundary conditions for the velocity are ob-
tained from the no-flux condition at the solid boundary. The
velocity components w,, wy, and w, are computed from the
contravariant velocity components wé, wi, and wf using equa-
tion (8).

[ =1 -
1
w, Er ; 20 gz wi
1
We = Nr ; Ne 7Nz wh
W, $ ; EB g-z wt

11

The contravariant velocity components in the right-hand side
of equation (11) are computed from the interior grid points
by linear extrapolation (Barton et al., 1987). The appropriate
contravariant component is set equal to zero in the right-hand
side of equation (11).

2 Pressure. The Neumann boundary conditions for the
pressure are obtained using the normal component of the mo-
mentum equation. For example at = const

BP;+ 0Py +pPy=~ S+ vy (12)
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N umerical Solutions

The governing equations (7) and (10) with the boundary
conditions (11) and (12) are solved using finite-difference tech-
niques. Although the governing equations are written in con-
servative form, the numerical solutions are obtained for the
nonconservative form because it is more suitable for the up-
wind differencing scheme used here.

Finite-Difference Approximation for Equation (7). The
momentum equation (7) is solved using the second-order up-
wind scheme (Roache, 1982), Depending upon the sign of the
contravariant velocity components, the velocity derivatives are
approximated using three grid points either upstream or down-
stream of the grid point under consideration. For example
dE/dt is approximated by

For we(i, j, k) > 0

wE (3N . oy a4
J <a£> - WE(I’./a k) [d’(l"h k) ¢(l I’Jv k)]/

XALI (i, J, k) +wh(D, J, KY @, J, )

=20(i—1,j, k) +¢(i—2, j, k))/2AL J(i, j, k) (13a)
For wi(i, j, k) < 0
wt (3¢ . , . .
2 (2PN _ e _
7 (ag) wé (i, J, k) [¢(l+1_,1, k)y—é(i, j, k)1
=20(i+1, j, kY+¢6(i+2,j, k)I/2A¢ J(, j, k) (13b)

where ¢ represents w,, wy, and w,. Similar expressions are
derived for 8F/dn and dG/a{ using the same method.

The pressure derivatives in the right-hand side of equation
(7) are approximated using central second-order accurate for-
mulas

i = [P(i+1, ), k)=P(i~1, ], k)]/2A¢ (14a)
5 = [P(i,j+1, k)—-P(i, j—1, k)]/2An (14b)

and
P = [P(i, ], k+1)—P(, j, k~1)]724¢ (14¢c)

o

where 7, j, and k are the grid points in £, , and {, respectively.
Also, the time derivative terms in equation (7) is approxi-
mated using first-order accurate formula

16_(‘5_ n+les 3
Jat_[¢ (I,J!k)

—¢"(i, J, k)1/AtJ (i, j, k) (15)
where the superscripts n and n+ 1 refer to the time levels ¢# and
{+ At, respectively.

Finite-Difference Approximation for Equation (10). The
pressure Poisson equation (10) and the boundary condition
equation (12) are approximated using the method developed
by Abdallah (1987a). The method consists of two steps for
inviscid flow. First, the pressure equation is written in con-
servative form. Second, the Neumann boundary conditions
(12) are applied at one-half grid away from the boundaries.
The finite-difference expressions for the first term in equation
(10) are written as (see Fig. 1)
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Fig. 1 Finite-difference grid
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Fig.3 Typical computational grid sections: (a) meridional view; (b) blade-
to-blade view; (c) hub-to-tip view

2 (@P;) = o [P((i+1, j, k) = P(i, j, k)]/AE

3
—a,[P(i, j, k) = P(i—1, j, k)I/AE? (16a)
%(BPW)=BL,[P(i+1,j+1, k) +P(i, j+1, k)
—=P(i+1,j—1,k)—-P(i, j—1, k)/
XA4AE Ay —B, [P (i, j+1, k)
+P(i—1,j+1, k) =P, j—1, k)
—P(i-1,j-1, k)I/4 At Aq (16b)
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where the subscripts e and w refer to the grid points i + 1/2
and [ — 1/2, respectively.

Similar expressions are obtained, using the same method,
for the rest of the derivatives in equation (10).

The source term f in the right-hand side of equation (10) is
approximated using central finite-difference formulas. Con-
sider for example the first term in the source f: ’
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Fig. 6 Static pressure profiles for Rotors 1, 2, and 3: (a) leading edge;
(b} trailing edge; (c) downstream exit '

9

% (SeVEY =[(Sif,+ Sybe/r+ S3t,)e

— (S, + Spfo/r+ S3.) 1/ AE amn

where S, S,, and S; are the components of the vector §,

‘equation (10b). With reference to Fig. 1, the terms in equation

(17) are approximated as follows:
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(b) 4

Fig. 7 Static pressure contours at the trailing edge station: (a) Rotor
1; (b) Rotor 2; (c) Rotor 3

Fig.8 Static pressure contours at the downstream exit station: (a) Rotor
1; (b) Rotor 2; (c) Rotor 3

wéw, wiw, i
(S1Er)e= (s»e{[ (——) - (-) }/AE °
I J ik I Jiix 10
+ [ <W7’wr) + (Wﬂwr> 9
I Jist, etk I Jijenk s
wrw, wihw,
_ (¥ - /4 A !
( J >i+l,j—l,k ( J )i.j—l, k:l "
() ()
S N e + >
J i+ 1, j+ 1, k+1 J i, j, k+1 {a} o)

PREDICTIONS
EXPERIMENT

RADIUS

4
wiw wiw 0.50 0,60 0.70 0.80 0,% 1.00 113 0.5 0,60 0.70 0.8 0.0 1.00 L.10
+ ( S ') - (____J ’) /4 Af VZIVINF VZIVINF
*LJ & i o k=1 Fig. 9 Axial velocity profiles at the leading edge: (a) Rotor 3; (b)
Similar approximations for the rest of the terms in equation Rotor 1
(17) are obtained using the same method.
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Similar expressions at j = j maximum — 1/2, i = 3/2, i
= { maximum —1/2, k = 3/2, and k = k maximum —1/2
are obtained using the same method.

Numerical Results. Numerical solutions for the governing
equations (2) and (3) are obtained for three rotors (Pierzga,
1980). These blades have been designed to have similar loading
distributions and wheel speed (@ = 64.6 rad/s), but different
amounts of dihedral. The upstream views (i.e., looking up-
stream) of these rotors are shown in Fig. 2. As can be seen
from these views, the stackup lines of rotors 1 and 3 depart
significantly from the radial direction. This creates a fairly
complex geometry to model.

Two iterative cycles are used in the numerical solutions of
the governing equations. In the outer cycle, the momentum
equations are advanced in time from ¢ to #+ Af using forward
finite-difference approximation for the time derivatives. The
spatial derivatives are approximated using the second-order
upwind scheme at time level ¢ (explicit solution). At each time
level (¢ + Af) the pressure Poisson equation is solved for the
pressure using the line successive overrelaxation method. The
iterative process of solving the Poisson equation is the inner
cycle. Since we are interested in the steady-state solution, only
one iteration is performed in the inner cycle. The advancement
of the momentum equation one time step and the solution of
the pressure equation at this step complete one outer cycle.
The process is continued in time until convergence is achieved.
The convergence criterion is that the residues in velocity and
pressure are less than a specified small number (10~%). The
residues in velocity and pressure are the average difference
between two successive outer cycles.

The computed results are obtained using 15 x 11 x 25 grid
points in the radial, tangential, and axial directions, respec-
tively. Two-dimensional grids on surfaces of constant radius
are stacked geometrically in the radial direction to form a three-
dimensional grid. Typical two-dimensional grid sections are
shown in Fig. 3.

It is important to mention here that twice the number of the
grid points, used in the numerical solutions, are shown in Figs.
2 and 3. These extra grid points are generated in order to
compute the metric coefficients at i+1/2, i—1/2, j+1/2, j
—-1/2, k+1/2, and k—1/2. ‘
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A typical convergence behavior for the velocity components
w,, W, w, and the pressure P is shown in Fig. 4 for the first
rotor. The iteration number in Fig. 4 refers to the time steps,
while the vertical coordinate is the residue. The average com-
putational time required to obtain a solution for each rotor
on a VAX 11/782 computer is eight hours, for 2000 iterations.

Numerical results are obtained for the three rotors using the
measured inlet velocity profile shown in Fig. 5. The effect of
different amounts of dihedral in the rotor blade is the impo-
sition of different pressure gradients on the flow field. These
effects can be seen in the computer pressure profiles shown in
Fig. 6. The pressure at the hub increases as one compares
rotors 1, 2, and 3, sequentially. At the tip, this trend is reversed.
As can be seen in Fig. 6(c), downstream of the blades, the
pressure profiles from hub to tip are very similar for the three
rotors. These trends are also apparent in the computed pressure
contours shown in Figs. 7 and 8, for the trailing edge station
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and downstream exit station, respectively. No pressure meas-
urements are available for comparison with the computed pres-
sure results.

Comparisons of measured axial velocities with numerical
results are shown in Figs. 9 and 10, for the leading and trailing
edge regions, respectively. Although the agreement is fair, the
trends are correct. For Rotor 3, the static pressure is higher
at the hub than at the tip, and the corresponding velocity
profiles, shown in Figs. 9(@) and 10{a), indicate lower velocity
at the hub than at the tip, as expected. From Fig. 6, it can be
seen that Rotor 1 has a lower pressure at the hub than at the
tip and the corresponding velocity profiles shown in Figs. 9(b)
and 10(b) indicate a reverse trend from hub to tip. One source
for the differences between the measurements and the nu-
merical results shown in Figs. 9 and 10 may be due to the error
associated with the measurements made very near the blades’
leading and trailing edge regions.

Measurements of the downstream axial and tangential ve-
locity components were available for Rotor 2, The comparisons
of the predictions with experimental data are in good agree-
ment, as shown in Fig. 11. The computed downstream flow
angles for the three rotors are almost identical, as shown in
Fig. 12. Also shown in Fig. 12 are the relative flow angles for
Rotor 2, which were determined from the measured velocity
components. These data agree well with the predicted flow
angles for Rotor 2. The calculated downstream axial and tan-
gential velocity components for the three rotors are shown in
Fig. 13. It can be seen from Fig. 13 that the three rotors have
approximately the same tangential velocity distribution. This
is consistent with the design procedure of specifying the same
amount of turning for the three blades, but different amounts
of dihedral.

Conclusions

Three-dimensional solutions are obtained for the inviscid
incompressible Euler equations using the primitive variable
approach. The governing equations are solved in general cur-
vilinear coordinates using nonstaggered grids. The method de-
veloped by Abdallah (1987a, 1987b) is applied in three
dimensions to satisfy the compatibility condition, necessary
for convergence of the pressure Poisson equation. The nu-
merical results are compared with experimental data of three
turbomachinery rotors.

The calculations made at a downstream station compare very

398 I Vol. 112, JULY 1990

well with the experimental data. Predictions made at the lead-
ing and trailing edge stations are in fair agreement with the
measurements made at these locations. These differences may
be due to the error incurred in obtaining data at the leading
and trailing edge locations. In general, predicted trends in the
radial variation of velocity and pressure are consistent with
the differences in the geometries of each rotor.
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Axial Flow Coinpréssor Design
Optimization: Part |—Pitchline
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Analysis and Multivariable
Objective Function Influence

The design of an axial flow compressor stage has been formulated as a nonlinear
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mathematical programming problem with the objective of minimizing the
aerodynamic losses and the weight of the stage, while maximizing the compressor
stall margin. Aerodynamic as well as mechanical constraints are considered in the

problem formulation. A method of evaluating the objective function and con-
straints of the problem with a pitchline analysis is presented. The optimization
problem is solved by using the penalty function method in which the Davidon-Flet-
cher-Powell variable metric minimization technique is employed. Designs involving
the optimization of efficiency, weight of the stage, and stall margin are presented
and the results discussed with particular reference to a multivariable objective

Sunction.

Introduction

In order to introduce a design system for axial flow com-
pressor stages, some criteria for a good design should be
stated. The first goal of a design system should be to generate
a compressor geometry that will produce the design point total
pressure ratio when the design point mass flow rate exists in
each stage of the compressor. Design point pressure ratio,
flow rate, and rotational speed must be obtained within the
aerodynamic and aeromechanical design requirements of the
machine with an acceptable level of compressor ther-
modynamic efficiency, an adequate surge margin, and a
reduced weight.

The compressor designer must therefore develop a com-
pressor geometry that demonstrates stable aerodynamic and
aeromechanical operation, including sufficient surge margin,
no excessive blade or disk vibrations, and acceptable ther-
modynamic efficiency for all expected operating conditions.

Subject to these constraints, the compressor configuration
should be designed for the maximum possible mass flow rate
per unit frontal area, the highest possible average pressure
ratio per stage, the minimum values of axial stage length, and
the minimum number of blades specified for each row.

These characteristics lead to the minimization of com-
pressor stage weight and cost.

The design system must include a procedure for determining
potentially satisfactory flow path geometries capable of stable
and efficient operation at the design flow rate and at a tip
peripheral velocity acceptable to the mechanical system
designers; a procedure for predicting the flowfield through the

Contributed by the International Gas Turbine Institute and presented at the
34th International Gas Turbine and Aeroengine Congress and Exhibition,
Toronto, Ontario, Canada, June 4-8, 1989, Manuscript received at ASME
Headquarters February 1, 1989, Paper No. 89-GT-201.
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compressor at the design point; a method for predicting com-
pressor performance at off-design flows and rotational speed;
a stress analysis (blade rows, disks, and shrouds); and an
aeroelastic analysis.

The abovementioned design method, even if simplified in
some parts, can be coupled with techniques of numerical
minimization. The goal of the present work is the presentation
of this coupling, using objective functions that are composed
not only of a single variable, but of a combination of
variables. This is done in order to avoid the improvement of a
single quantity (efficiency), to the detriment of other impor-
tant compressor characteristics. The optimization is per-
formed with the appropriate physical constraints; the design
limit parameters provide a quantitative basis for predicting the
conditions under which unacceptable blade row or overall per-
formance will occur. They are needed in a preliminary design
as arbitrary stop signs in setting up a geometric flowfield
combination. '

Formulation of Optimum Design Problem

Any optimization problem involves the identification of
design variables, objective functions and constraints of the
problem.

Design Variables. These are preselected variables, which
can assume independent values in the design process. The
other data of the problem are either given at the beginning of
the design process or can be expressed in terms of the design
variables.

For the design of an axial flow compressor stage, the
following parameters are taken as the design variables:

JULY 1990, Vol. 112/ 399
SME

copyright; see http://www.asme.org/terms/Terms_Use.cfm



X, = stage enthalpy drop (¥)

X, = inlet flow coefficient (p)

X;=outlet flow absolute angle from the stator («;)

X,= mean diameter of the stage (D,,)

X;= axial velocity ratio in the rotor (AVRy)

Xs= axial velocity ratio in the stator (AVR)
X;=solidity of the stator (oy)

Xg= solidity of the rotor (og) : :

Xy= ratio of the chord of the rotor blade to the mean

diameter (Cr/D,,)

Xo= ratio of the chord of the stator blade to the mean
diameter (Cs/D,,)

X, = maximum thickness to chord ratio of the stator blade
(tm/C)S

X, = maximum thickness to chord ratio of the rotor blade
(tm/C)R

Variables have been chosen in order to be easily identified in
the initial design phase; they are mainly nondimensional (¢, ¢,
AVR, g, ¢t,/C, C/D,) or, if dimensional (D,,) they represent
the size of the machine to which the stage refers. The angle a5,
even if it was introduced in the design variables, could be easi-
ly referred to a fixed design parameter (i.e., a3 =0 deg or
0y = ozl).

It is necessary to point out that in similar work on turbines
(Rao and Gupta, 1980), design angles are confused with flow
angles. In the present work the incidence and deviation angles
are taken into account for every row. This is done by using
design variables and data that make it possible to obtain the
flow angles, based on loss and turning correlations. Using the
design variables and data in this manner permits the evalua-
tion of the incidence angle for which the minimum losses are
achieved and the corresponding deviation angle. This aspect
will be discussed in the course of this paper.

Objective Function

A design problem usually has several solutions that may
adequately satisfy the specified functional requirements. The
objective function in a general optimization problem
represents a basis for the choice between various equally ac-
ceptable designs.

In the case of an axial-flow compressor used in aerospace
applications, the minimization of weight is one of the most im-
portant criteria, while in the case of a gas compressor used in
stationary power plants, the maximization of efficiency
represents a more useful criterion. In both cases, therefore,

the machine presents the highest operating capacity. Therefore
the compressor could be designed with the widest stall margin.

Thus, in some cases, a mixed (multivariable) objective func-
tion representing a linear combination of weight, efficiency,
and stall margin would be a more appropriate objective. In
this work the multivariable objective function is used so that
the optimum design of an aerospace or industrial compressor
can be found using the same computer program and ascribing
suitable importance to the efficiency, stall margin, and weight
of the machine in the objective function.

Objective Function Evaluation

Since the complete objective function comprises three
distinct quantities, efficiency (losses), stall margin, and weight
of the stage (specific inlet area), each one will be considered
separately. The inlet total pressure and temperature, the mass
flow rate, and the total-to-total pressure ratio are pre-assigned
parameters. The values of the design variables are assumed to
be known at the beginning of the analysis and will be modified
during the design analysis iterative process (Fig. 1).

Efficiency (Losses) of the Stage. The necessary steps for
evaluating the total-to-total stage efficiency are stated sequen-
tially in this section. This involves assuming a trial value of ef-
ficiency n4,, and iterating until the values of stage efficiency
in two consecutive iterations are sufficiently close to each
other. The free vortex assumption is employed for three-
dimensional design consideration (tip and root flow
characteristics and relative limits).

After determining the geometric characteristics of the inlet
area and the value of the peripheral velocity, the flow angles
are evaluated in the light of the axial velocities and the total
temperature gradient, which has been estimated on the trial
value of the efficiency. This allows prediction of the upstream
row flow characteristics and, with the geometry information
available from the design data, evaluation of the incidence and
deviation angles. Thus it is easy to get the blade angles. The
evaluation of the incidence and deviation angles is based on
the NASA-SP 36 correlations, assuming that the incidence
angle is the one for which there is minimum loss (i*) and so ob-
taining the corresponding deviation angle (6*). The abovemen-
tioned procedure is, of course, iterative (the incidence starting
value is set equal to zero). The loss calculation is based on the
correlation curves presented by Davis and Miller (1976).
Shock losses have been evaluated with the Miller-Lewis-Hart-
mann method (Miller et al., 1961).

The knowledge of the loss coefficients allows evaluation of
the conditions downstream of the stage (and thus also the effi-

Nomenclature
A, Ay, = area, specific p = pressure ¢, ¥ = flow and head stage
area= /A S = entropy coefficients
AVR = axial velocity ratio t, = maximum blade w = total pressure loss
C = chord thickness coefficient
C, = stall margin T = temperature
' coefficient U = peripheral velocity Subscripts
¢ = absolute velocity w = relative velocity 1, 2, 3 = station number
D,, = mean diameter x = design variable a = absolute
D; = diffusion factor o, B = relative and absolute b = blade
G,, G,, G, = objective function flow angles h = hub
coefficients B = total-to-total pressure m = mid
H = blade height ratio r = relative
h = enthalpy nry = total-to-total stage R, S = rotor, stator
i, 6 = incidence and devia- efficiency t = tip
tion angle o = density
m = mass flow rate o = solidity Superscripts
M = Mach number 7 = tip clearance " = nondimensional
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Fig. 1 General optimization flow chart

ciency). Suitable corrections considering the tip loss correla-
tion of Lakshminarayana (1970) are made.

Stall Margin. Great difficulty and expense may be in-
volved in correcting compressor stall margin problems,
because detailed refinement and development may not be suf-
ficient to correct the problem if the basic design has not been
chosen to permit the required stall margin to be achieved. In
the present work a procedure that allows easy and rapid
evaluation of the stage ‘‘stall margin’’ is essential. The cor-
relation proposed by Koch (1981) has been chosen because of
its simplicity and because it is particularly well suited for
preliminary design studies. The term chosen as the primary
dependent variable relating to stall pressure rise was the
overall stage enthalpy equivalent static pressure rise coeffi-
cient C,. This is based upon stage overall static pressure rise
converted to the equivalent isentropic enthalpy rise, minus any
enthalpy change attributed to changes in pitchline across the
rotor (Koch, 1981).

Note that the stall margin correlations are based upon
simplified stage-averaged pitchline quantities, as is the method
presented for the stage efficiency calculation.

In the calculation the rotor and stator stall margin values
are combined into a weighted averaged stage value in which
the blade row inlet dynamic head was used as the weighting
factor.

Stage Weight. In the present analysis the evaluation of the
stage weight was not easy, considering it was evaluated in a
preliminary procedure (pitchline analysis). It is, however,
possible to single out a variable that, because of its correlation
with the stage weight, can be evaluated more easily. Therefore
the stage inlet specific area has been chosen; it is the ratio be-
tween the mass flow rate and the inlet stage area
(A,, =m/A,). Since both of the two other variables that com-
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prise the objective function are, in value, less than unity, we
chose to work with a limited variable in this case too. This
makes it possible to simplify the choice of the coefficients to
be assigned to any single objective in the multivariable objec-
tive function. To reduce the specific area value, it has been
related to the value it should have in the inlet stage area if
sonic conditions were to happen.

Design Constraints

The constraints of the optimized design procedure could be
of two different kinds: rectangular constraints, which are
directly applied on the design variables and so defined as

X< X;< XY

They are evaluated on previous design data and on the field of
the possible applicability of the correlations used in the objec-
tive function computation. However, a direct constraining of
any single design variable does not assure that, in a particular
combination of them, some of the mechanical or fluid
dynamic variables could exceed the usual limits,

For this reason, nonrectangular constraints have been
chosen: They are related to aerodynamic ‘‘loading,’’ flow in-
stability, limiting flow rate through a flow path element,
aeroelastic aspect of compressor blade rows, and noise
generation,

It is important to observe that, since the objective of the
present work was to evaluate the aerodynamic potential of the
new design method, stress and vibration analysis for this
design stage were limited.

The limits that are used in this work are:

» The rotational velocity of the rotor should be within some
upper and lower bounds.

« The aspect ratios of rotor and stator blades should be within
some specified upper and lower limits.

« The axial Mach number at stations 1, 2, and 3 should be
within specified bounds. '

+ The included angle of convergence of the compressor an-
nulus walls should not exceed the specified upper limit.

« The tip rotor clearance should be lower than a limit value.
+ The ratio between the tip rotor clearance and the rotor
height should be within specified bounds.

+ The stresses developed at the root of the rotor blade should
be less than the permissible value.

 The ratio between the blade height and the mean diameter
of the stage should be within specified bounds.

» The rotor and stator blade numbers should be within
specified bounds.

» The relative tip rotor Mach number should be less than a
permissible value.

» The stator and rotor stall margin should be greater than a
specified value.

+ The specific inlet area should be greater than a specified
value. :

« The total-to-total efficiency should be greater than a
specified value.

The constraints other than those involving stress and vibra-
tion can be specified with the help of the relations utilized to
evaluate the objective function. For the purpose of stress com-
putations the rotating blade is idealized as a rectangular can-
tilever beam having linear taper in depth, breadth, and twist
from root to tip and subjected to rotational pressure and gas
bending stress.

In the present analysis a method similar to the one proposed
by Rao and Gupta (1980) is utilized with some simplification
such as using only the centrifugal stress calculation.

Statement of Optimization Problem

The optimization problem (see Fig. 1) can now be stated in
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Table 1 Optimization results for three different limits imposed at Table 3 Influence of «4 value on the optimization (OBJ=1-1yyy;
Xg=a3 ag =20 deg; DCA blade; 871 = 1.75; i = initial; o = optimum)
STARTING OPTIMUM VALUE
viiif\g?js viLUE — Q=0 4 = 10° &,= 20°
! o =<10° = 0° :
Gy =20 G= Gy
—_— i o i o i o
(% 0.4 0.496 0.462 0.438
i 7 0.870 0.914 | 0.884 0.914 [0.883 0.910
@ 0.45 0.465 0.471 " 0.464 TT .
A 180 166 178 178 176 177
a (°) 0.9 (0.0) 19.99 9.19 0.0 sp
3 .C 0.541 0.516 | 0.534 0.512 |0.526 0.531
D (m) 0.170 0.163 0.159 0.158 h
1 - w 0.128 '0.082 | 0.103 0.076 |0.088 0.075
AVR_ 1.15 1.04 1.00 1.00 R
0.061 0.047 | 0.069 0.051 [0.089 0.063
AVR 1.20 1.32 1.40 1.48 Wy
. ] .134 1. . ]
o, S T 0 150 174 in 1.224 1.081 | 1.134 1.089 [1.052 1.049
o, e T8 36 127 M 0.669 0.646 | 0.664 0.705 |0.826 0.780
c/n 0.300 0.200 0.200 0.222
c /D 0.140 0.128 0.13 0.122 Table 4 Influence of the kind of blade row on the optimization resuits
S m (OBJ =1~ 977 a3 =20 deg; i = initial; 0 = optimum)
. . . .0
tm/cR 0.050 0.0518 0.0487 0.0447 XIND OF R S o
€ /Cg 0.050 0.0498 0.0502 0.0745 BLADE e
m
0BJ=(1-7) ) 0.875 0.927 0.920 0.917 ROW
—_ i o) i o i o
=4 kg/s ; B = 1.65 ; P__= 101300 Pa ;
TT o1 n 0.876 0.919 | 0.875 0.921 |0.883 0.920
T =2300K; Q.= O°. TT
o1 1 A 171.8 162 171.9 168.9 |171.3 170.2
sp
C 0.537 0.488 | 0.535 0.481 [0.541 0.515
Table 2 Design constraints h
a 9.00 15.08 | 9.00 19.99 |9.00 19.87
O.O3<H1/Dm<0.3 0.03 <H2/D <0.3 0.03=<H /D==0.3 3
n 2 m w 0.112 0.068 | 0.114 0.067 |0.103 ©0.063
50<U <450 (m/s) 0.5<(H./C )<4 0.5a=(H_/C_ )=3 R

1 R 2 8 W 0.059 0.049 | 0.059 0.046 |0.059 0.051
0.1<M_ <0.7 0.1<M <0.9 0.1=M ==0.9 s
RY ;‘ — ai a3 05 1.364 1.352 | 1.363 1.398 |1.368 1.417

. 1 0.00l== T/H =< 0.01
)<<l (m =T 1 Ostress< GAM
15<2_< 50 20=7 =< 100 M =<2.0 .

: rlt The results were generally positive (within 1.0 percent of the
0.35<C o 0.35=C o 140=A_ measured value at design point) for low and medium stage
0.75 < 1.=H /H=2.5 1.<H /H =<1.5 aspect ratios while, for higher aspect ratios, notable dif-

TT 1772 23

O.2<(p<0.60 0.15<1/)<O.5 O°<a3<20°

0.15m<Dm<0.3 m 0.8=<AVRR==1.5 1.0=tAVRS=<1.5

1.0<oS< 2.0 O.6<0'R<2.O o.2<(cR/Dm)<0.5

0.1 <(C_/D })<0.5 0.035==(t /C)=<0.2 0.035=(t /C) ==0.2
S m m R m S

the format of a nonlinear programming problem as follows:
Find [X] that minimizes

SO =G,(1=npp)+Ga(1-Ag) +Ge(1-Cy) 1)
subject to the constraints
X< X; < XY

8; (X)

The details of the method are presented in the part II of this
work,

Applications

Before starting up the complete optimized design of the
stages of an axial compressor, the method to calculate the effi-
ciency was accurately verified. The method was tested using
geometric and experimental data available in the literature.

402 ]/ Vol. 112, JULY 1990

ferences from the experimental data were encountered.
The complete optimization method was first used with a
single objective function coincident with n,, and then with a
1., Cp).

multivariable function (977, 4,

Single Variable Objective Function. To use the suggested
method, we have chosen to design a stage of a small axial com-
pressor (=4 kg/s) with a high pressure ratio (8= 1.65).

The design variables, and the initial and optimized values,
are shown in Table 1, while in Table 2 the numerical values of
constraints are shown. The optimization has been performed
with a single variable objective function, the total-to-total
stage efficiency.

The initial stage efficiency value of 0.875 grows up to 0.927
(o3 <20 deg). This confirms the capacity for improvement in
the stage performance using the proposed method.

The optimized results shown in Table 1 have been obtained
by imposing different limits to the stage («;). As shown, the
design variables, particularly ¢, ¥, AVR, and o seem to be par-
ticularly sensitive to the o limits. In all three examples, the
optimized efficiency seems to be too high if referred to the
total pressure ratio of the stage. The optimization procedure
has, as seen before, carried out a reduction of the relative inlet
Mach number (to which shock losses are related) so permitting
a remarkable reduction in the rotor losses (wg, =0.114 and
wge =0.0675).

Additional calculations have been performed by modifying
the inlet flow angle («;), simulating in this way the presence of
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Table 5 Influence of the different coefficient values in the
multivariable objective function (C--series; m=4 kgls; a3<20 deg;
Brr =1.65)

“pl G | % Tpp Ao %

- - - 0.875 | 171.98 | 0.535
1] o 0 0.921 | 158.88 | 0.481
o | 1 0 0.600 | 225.74 | 0.539
o | o 1 0.415 | 145.72 | 0.598
1| 1 1 0.786 | 208.95 | 0.572
1| o 1 0.888 | 162.04 | 0.553
1] 1 0 0.854 | 208.60 | 0.478
o] 1 1 0.730 | 213.90 | 0.572
1 |0.5 1 0.891 | 187.63 | 0.577

an IGV or of a stage upstream. As an example, Table 3 shows
the results obtained for «; =0; 10; 20 deg.

Similarly, the influence of blade profile on the optimization
process has been investigated. The correlations used
throughout this method consider three different kinds of pro-
files: DCA, C-series, and C-65. The results obtained are
shown in Table 4. Looking at the tables quoted it generally
transpires that, whereas 5, increases, the other significant
design variables (4,,, C;) are dramatically reduced. This
remarkable feature points out the necessity to operate with
mixed objective functions.

Multivariable Objective Function. A design optimization
has been performed using a multivariable objective function
from equation (1). To achieve this purpose and considering
the values of the single variables, which compose the objective
function, several calculations have been performed, varying,
along the limits of the range 0.0 to 1.0, the coefficients G,,
GA N and Gc.

Table 5 shows the initial values of 57, Ay, and C,, and the
final values after the optimization process. It is necessary to
point out that in this application, the constraints on the
minimum value of 4,7, Ag,, and C, have been eliminated, so
that the design optimization tendency could be completely
manifest. From Table § it is evident that if G, =0, the values
of nrr are absolutely unsatisfactory, especially in the case
where G, and G are unity. For this reason, the efficiency
should always be present in the objective function. In the case
where G, =1 and G =0, a high reduction in the stall margin
results (especially if G, =1).

If G,=G,=Gc=1, the dominant effect of G, leads to a
large increase in the specific area and also a corresponding
decrease in the starting value of efficiency (from 0.87 to 0.78).

It is no doubt necessary to investigate in detail the influence
of the three coefficients G,, G4, and G so that they all have
average values between 0 and 1; for instance, looking at the
last line of Table 5 where G, =1, G, =0.5, and G.=1, an in-
crease in all three functions in the objective function was

achieved. )
The different values of the three coefficients influence, of

course, not only the constituent functions of the objective, but
also geometric and fluid compressor parameters. For example,
Figs. 2 and 3 show the radial distribution of the relative Mach
number along the rotor span at the inlet and the absolute
Mach number in the three axial computational stations. In this
case the large influence of G4 and G, is also evident. The lines
when G, =0 are plotted on the figures just to compare with
each other, because they show excessively low values of the
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stage efficiency. The analysis of the optimization with the
multivariable objective function has been finally performed
varying G, from 0 to 1, with G as a parameter and G, =1.
The behavior of the optimum efficiency is plotted in Fig, 4
(data of Table 1 have the starting values). The optimum effi-
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ciency decreases greatly with G,. The same trend, albeit
reduced in effects, is shown by the function of G. Figure 5
shows the “‘stall margin coefficient’’ C,; the influence of G,
is negligent for high values of G, while if G =0 the increase
in G, is positive for the stall margin. The specific area A4,
shown in Fig. 6, is slightly influenced by G, while it increases
greatly if G, increases too, over its entire variation range.
From what has been said, it can be concluded that the op-
timum conditions should be defined according to the design
requirements. In fact, if G, =0, 577 could be high with 4, in-
sufficient, and vice versa. The influence of G on 7 and 4,
seems to be slight but considerable on the stall margin.

Conclusions

The ability to apply optimized design techniques for the
development of a compressor stage has been shown.

The choice of the design variables and the constraints, and
the calculation of the objective function have been analyzed
and described. The possibility of obtaining remarkable results
by applying the classic theory of the objective function coinci-
dent with the stage efficiency, which is largely employed in
turbine studies (Baljé and Binsley, 1968; Macchi and Per-
dichizzi, 1981; Massardo et al., 1984), has been shown.

Nevertheless, the fact has been pointed out that an increase
in efficiency can reduce the values of other significant design
variables (weight of the stage, stall margin, etc.). Hence, an
optimized design, with a multivariable objective function, has
been achieved. The variables selected are the efficiency of the
stage, which leads to minimum losses, the stall margin, which
allows a wide stable characteristics curve, and finally the inlet
specific area, which is related to the weight of the stage.

404 / Vol. 112, JULY 1990
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All variables have been evaluated by a pitchline analysis.
The results show the possibility of obtaining optimum design
with remarkable increases in all three variables of the objective
function or at least in some of them. The process depends
strongly on the assumed values of the three coefficients G,
G,, and G.

Experience shows that the objective function needs G, to be
always equal to 1, while the effect of G, which greatly in-
fluences the stall margin, is generally less remarkable than G 4.
The choice of G,, G, and G is made by the designer, based
on the particular requirements of the stage design, and by
referring to the results shown in Fig. 4 and the subsequent
figures.

It should also be pointed out that, while the optimization
scheme is extremely rapid, taking about 2 min of CPU on a
B-6800 Burroughs Computer, it is limited to the mean
diameter geometry.

In Part II of this work (Massardo et al., 1990) an extension
of the method to the whole radial geometry distribution,
coupled to a throughflow analysis, will be presented.
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A new technique is presented for the design optimization of an axial-flow compressor
stage. The procedure allows for optimization of the complete radial distribution of

the geometry, since the variables chosen to represent the three-dimensional geometry
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of the stage are coefficients of suitable polynomials. Evaluation of the objective
Sfunction is obtained with a throughflow calculation, which has acceptable speed
and stability qualities. Some examples are given of the possibility to use the procedure

both for redesign and, together with what was presented in Part I, for the complete
design of axial-flow compressor stages.

Introduction

Techniques of design optimization of turbomachines have
for the most part been employed in the field of axial-flow
turbines (Balj¢ and Binsley, 1968; Rao and Gupta, 1980;
Macchi and Perdichizzi, 1981). In all these cases, as in the
procedure on axial-flow compressor stages presented in Part
I (Massardo and Satta, 1990), the fluid dynamic analysis, which
enables the objective function to be evaluated, referred to the
mean diameter of the machine. The simplicity of such a cal-
culation is justified by various considerations, among which
are the need for a rapid calculation of the objective function,
considering the strong iterative aspect of the optimization re-
search; the need for an immediate definition of the global
geometry of the machine; and the possibility to obtain useful
general information particularly with regard to preliminary
design choices.

Nevertheless, the design result only gives the optimum ge-
ometry of the rows at the mean diameter. Instead, the radial
distribution of the geometric characteristics between the hub
and the shroud remains incompletely defined with respect to
the optimum value. In fact, one-dimensional optimization does
not provide any information concerning the three-dimensional
shape of rotor and stator blade rows. With a view to a complete
optimization, it is therefore necessary to optimize the radial
distribution of the airfoil geometric characteristics.

To define the radial distribution adequately, substitution of
a pitchline analysis with a procedure that provides information
concerning the radial distribution of flow within the stage is
required. Such analysis contains various aspects that can make

the coupling of numerical minimization procedures quite com-,

plex. Among these are problems with calculation time, which
is undoubtedly larger than the time required for the mean
diameter analysis (Massardo and Satta, 1986), and problems
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of stability (related to the difficult choice of which constraints
to apply to design variables). Calculation times are increased
since the throughflow analysis requires solutions of an iterative
type and this will be used frequently in the optimization cal-
culations. Thus, it is clear that the success of such a coupling
resides chiefly in the choice of a rapid throughflow calculation
with stability and precision.

Particular attention must be given to the choice of design
variables; in previous applications (Massardo and Satta, 1987),
the design variables were the geometric characteristics of the
blade on three sections along the span. The calculation time
was controlled, but the optimum results were not completely
sufficient for the correct design of the stage. If more than three
sections were analyzed, the optimization provided unaccept-
able geometric results. This was due to the difficulty in choos-
ing adequate constraints to the numerous design variables. The
present work has allowed all of these problems to be eliminated,
and also contains interesting results for transonic compressors.

Formulation of Optimum Design Problem

The organization of a design problem using optimization
techniques requires the definition of three fundamental pa-
rameters: design variables, objective function, and constraints.
It is also necessary to predispose a scheme to which the op-
timization must refer.

Design Variables. While evaluating the objective function
with a pitchline analysis, the choice of design variables, al-
though not a simple operation, is a process that is easy to
verify. In the case of optimization with a throughflow analysis,
the selection becomes much more difficult. In fact, to change
from the first to the second case, the first thing to do is to
place beside the mean diameter section other sections along
the entire blade span from which geometric optimization pro-
ceeds. In a previous work (Massardo and Satta, 1987), we
chose to work with three radial sections — root, mean, and
tip — for a total of ten design variables for each single row,
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considering the fixed geometry of the meridional section
(shroud and hub profiles). The results obtained demonstrated
the need for a better definition of the design variables and,
therefore, of the row geometry. The number of radial sections
was then increased to five. However, the results obtained were
unacceptable due to the difficulty of choosing congruent values
for the design variable constraints. The solution to the problem
lay in choosing as design variables the coefficients of suitable
polynominal that represent, in a continuous constructive and
mathematical sense, the representative functions of the ge-
ometry to be optimized. Therefore, the geometric function can
be expressed as ‘

f=a + &R + a;R* + a,R° + ... + q,R"" (1)
where R is the nondimensional radius.

In turbomachinery problems it was held sufficient to con-
sider only the first three polynomial terms. The design variables

that result are defined as follows:

Biy = a1 + &R + @R (2)
B = as + asR + agR* 3
0= a; + agR + aR? 4)
tn/C = ay + a R + apR? ®)
C=a; (6)

The chord is fixed in only one radial position, at the root
for instance, and its radial values result from the solidity dis-
tribution. The choice of such variables, which result in 13 for
each single machine row, moreover permits the throughflow
calculation with the desired number of calculation lines along
the blade span without encountering problems for the correct
recognition of the geometry (in fact, no interpolations are
necessary). Furthermore, the choice of constraints for the a;
variables turns out to be extremely simple and effective as the
following applications will demonstrate.

The 13 design variables for each single row entail, in the
case of one stage, the need to work with 26 variables, and
thus, as shown by Massardo and Satta (1987), the need to
apply the technique to one stage at a time. This is for two
reasons: the calculation times that increase rapidly with the
number of variables and the difficulty in searching for the
minimum of one function at an elevated number of variables
(>40).

Finally, it is possible to observe that in this case, as opposed
to the procedure presented in the preliminary design charac-
teristics of Part I (Massardo and Satta, 1990), the design vari-
ables are all geometric. This is due to the supposition that the
optimization criteria will be applied to a machine of which the
design is known, albeit only a preliminary one.

Objective Function

Although the necessity of operating with an objective func-
tion with many variables was shown in the first part, here we
preferred to conduct the optimization on only one objective
function coincident with the stage efficiency (npy). It turns out,
in fact, to be easy to evaluate the function with the throughflow
calculation along the entire blade span. On the other hand,
the calculation of the stall margin presents difficulties since
the correlation used in Part I is typical of preliminary design
computations (pitchline analysis) and more complex techniques
could excessively burden the design procedure. Finally, as far
as the specific inlet section (A,, = m/A,) is concerned, it would
require the alteration of those variables that, as will be further
described, it is preferable to keep constant during optimization
(Hlv Dl9 Dha I’l).

Design Constraints

What was stated in Part I (Massardo and Satta, 1990) con-
cerning optimization constraints holds true in this case also.
It must, however, be observed that due also to the fact that
some quantities are already fixed (blade span, rpm, shroud
and hub radial distributions, tip clearances), the choice of
nonrectangular limits turns out to be greatly simplified with
respect to the pitchline calculation.

The limits are chosen on the basis of experience since beyond
certain values, a realistic blade shape will not result. In ad-
dition, certain extreme combinations of variables may cause
convergence problems and are therefore best avoided. The
constraint functions specified are:

e relative inlet tip rotor Mach number (< 1.8)

® maximum stress at rotor root (< a,,)

e maximum and minimum blade number for rotor and sta-

tor rows

e maximum and minimum aspect ratio for rotor and stator

TOWS

e stator and rotor stall margins (calculated at the mean

diameter) greater than a specified value.

Throughflow Program

The flow that develops in the axial compressor is evaluated
with a throughflow matrix method, which solves the main
equation of the stream function. This solution is obtained using
a matrix technique; the choice of the above rather than others
is due to the fact that with it the control of computational
times is possible without a reduction in calculation precision
(at least in this application). The matrix technique solves the
stream function equation of a fixed network placed in the
meridional plane of the machine. This does not change during
the repetitive solution of the equation unless the longitudinal

Nomenclature
A = area
Ay, = specific area = m/A i, 8 = incidence and deviation Brp = total-to-total pressure
a = polynomial coefficient angle ratio
a, X = design vectors m = mass flow rate nrr = total-to-total stage effi-
b = penalty function con- n-= rotational speed ciency
stant p, = total pressure o = solidity
C = chord R = nondimensional radius w = total pressure loss
D = diameter S; = current search direc- coefficient
D; = diffusion factor tion .
F = objective function t, = maximum blade thick-  Subscripts
g = constraint ness 1,2 = inlet, outlet
G, Go, G4 = objective function T, = total temperature ax = axial
coefficients a, B = absolute and relative b = blade
H = blade height flow angles h, t = hub, tip
406 / Vol. 112, JULY 1990 Transactions of the ASME
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geometry is altered. Therefore, the calculation of the coeffi-
cient matrix and its factorization, whose calculation time is
about one half of the entire program time, is performed only
once even though the fluid dynamic analysis is developed dur-
ing the iterative procedure of the minimum research. A de-
scription of the matrix method is available from Breschi and
Massardo (1982).

Correlations available in the open literature (Davis and Mil-
lar, 1976), which have shown reliable results at compressor
design conditions, have been used to evaluate the compressor
efficiency. For the analysis of the transonic flow, the code was
modified and coupled to a solution of the gradient velocity
equation, described by Massardo and Pratico (1984); the code
furthermore permits, in an automatic way, the calculation of
the annulus wall boundary layer with an integral type solution
(Perkins and Horlock, 1971) and the calculation of the sec-
ondary deviation angle (Massardo and Satta, 1985).

The reasonable reliability of the throughflow code results
was evident in many previous applications, in particular with
regard to the efficiency prediction at design condition. The
latter is chosen as the objective function.

Optimization Scheme

The general scheme illustrated in Fig. 1 of Part I (Massardo
and Satta, 1990) is sound, except for the necessary modifi-
cations in the throughflow calculation, and for the optimi-
zation of the radial distribution of the blade geometry.

If it is thought desirable to couple the two procedures pre-
sented here, this is made possible by using the technique il-
lustrated in Fig. 1, where the throughflow procedure presented
is made to follow that of preliminary optimum design.

Starting from initial data (p,, 7, Brr, /1) and from the mean

Journal of Turbomachinery

diameter design variables (X}), and working with a multivar-
iable objective function, the mean diameter optimum geometry
is obtained.

Beginning here, by hypothesizing a law of radial geometry
distribution (for example the free vortex), the values of the
initial data of the throughflow calculation (D, D,, n) and the
new design variables (g;) are obtained. Using the same algo-
rithm of constrained minimization. as in the first part, the
procedure continues to complete optimization until the pre-
fixed objective is reached. The throughflow procedure can, of
course, be applied to the initial geometry obtained by means
of traditional techniques.

Statement of Optimization Problem

The optimization problem can now be stated in the format
of a nonlinear programming problem as follows: Find the a
that minimizes

S@) = G, (1 — gr7)
subject to the constraints

Jj=1n M

g (@) ®

Solution of Optimization Problem

The problem of the optimum design of an axial compressor
stage has been formulated and a method of computing the
objective function and constraints has been developed. The
problem formulated is in the form of a nonlinear mathematical
programming problem and can be stated in the standard form:
Find the @ = {”*} that minimizes F(7) ©

m.
and satisfies the constraints g; (@)<0; j=1, n.

The function F(a) need not be known analytically, but it is
specified by giving its value at any point a in the space of
parameters. The space may be limited by physical restrictions
on the permitted values of the parameters.

When the problem involves ‘‘nonrectangular’ constraints
(i.e., constraints that cannot be expressed by imposing simple
independent limits of the form 4 < a < B), the penalty function
method is utilized as follows: Suppose we wish to minimize
the function F(@) subject to the condition g(@) <0; then define
the objective function value F to be

F = F(a) if g(@)<0
F = F(@)+b [gXa)] if g(@)>0

where b is a constant, large compared with F.

Note that this method requires F(@) to be defined every-
where, and to be continuous at g(@) =0, which may sometimes
be difficult to arrange. However, the method is usually found
to work well and is perfectly general (i.e., independent of the
method used for minimization). The penalty function methods
are quite reliable and their sequential nature allows a gradual
approach to the criticality of constraints.

The previous equations require a feasible starting point.
Since each of the designs generated during the optimization
process lies inside the acceptable design space, the method is
classified as an interior penalty function formulation.

The sequence of minimization of F(@) is done according to
the iteration

(10
(11)

(12)

where @;, | is the design vector corresponding to the minimum
value of F along the current search direction S;, @;is the starting
design vector, and A* is the minimizing step length in the
direction S;. From the several methods available for finding
the search direction S;, the selected Davidon-Fletcher-Powell
variable metric method is a powerful general method for find-

Gy = 8 + N'S;
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ing a local unconstrained minimum of a function of many
variables (Fletcher and Powell, 1963).

Applications

The applications of the developed procedure fall into two
categories. The first utilizes the process for the redesign of an
existing isolated transonic rotor. The second applies the com-
plete procedure shown in Fig. 1. The single transonic rotor
described by Seyler and Gostelow (1967) is selected for the
verification of the described optimization process. The prin-
ciple geometric data of the rotor, which coincide with the
polynomial functions to be optimized, are shown in Figs. 2,
3, and 4, respectively. The root chord is equal to 0.0838 m
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and is constant along the entire blade span. The calculation is
carried out for the design conditions: m=96.18 kg/s and
n=8870 rpm. The initial efficiency (original geometry) is equal
to 0.897, while the value obtained at the end of the optimization
process is 0.943, greater than a 4 percent increase. Figure 5
illustrates the objective function history during optimization.

In Figs. 2, 3, and 4, quoted above, in addition to the initial
radial distribution values, optimized values are also given; it
is possible to note how the angle 8, has undergone slight
variations, particularly in the zone above the blades, while the
maximum variation is present at the root, where the change
takes the value of approximately 4 deg.

The angle $3,, shows shift with respect to the initial value,
particularly in the central zone along the span, where the max-
imum variation is approximately 6 deg. This involves an in-
crease in blade curvature in the central zone with a slight
reduction in the extreme zones of the root and the tip. The
solidity is reduced along nearly the entire span with the only
exception being the tip zone (it passes from 1.30 to 1.41). The
maximum thickness/chord has, at the end of optimization, a
more uniform radial distribution. Particularly noteworthy is
the increase in the upper zone (from 0.035 to 0.051) and the
reduction at the root (from 0.085 to 0.075). Such a reduction
does not represent a problem from a mechanical resistance
point of view since the root chord also increased, passing from
0.0838 m to 0.0910 m. The fact that all of the design variables
present continuous and smooth radial distributions is partic-
ularly noteworthy.

In addition to the quantities discussed above, it is interesting
to study the distributions of other geometric quantities (axial
chord) and fluid dynamics (losses, diffusion factor, incidence,
and deviation angles).

The axial chord (Fig. 6) indicates higher values in the op-
timum case with respect to the initial values. The analysis of
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Fig. 8 Initial and optimum radial distributions of total pressure loss
coefficient (i = initial; o= optimum)

the diffusion factor (Dy) is of particular interest (Fig. 7). The
optimization operates in the sense of a reduction of D,in the
R <0.4 zone, while in the upper area, Dy increases in a sig-
nificant manner, above all at the tip. Following the D; distri-
bution directly, except for shock losses, is the radial distribution
of the losses (Fig. 8).

_ For R<0.6, the loss reduction is significant; for instance at
R =0.30 it passes from w=0.080 to w=0.027; in the tip zone,
where a great deal of the loss is due to shock, although a
reduction occurs (from 0.062 to 0.049), it appears to be more
contained. The reduction of w obviously justifies the note-
worthy increase in efficiency.

Finally, Figs. 9 and 10 show the initial and optimum dis-
tributions of the incidence and deviation angles. The variation
in the radial distribution of the incidence angle is notable,
particularly in the region for R <0.5. The dotted line indicates
for the initial and optimum configurations the value of the
‘“‘star”’ incidence, obtained with the NASA-SP 36 correlation.
As is evident, the difference between i and i* is reduced sig-
nificantly with optimization. As far as the deviation is con-
cerned, there is a slight increase where R > 0.30 (resulting from
the increase in the profile curvature) and a slight reduction i
seen at the root. .

The second application envisages the employment of both
procedures (pitchline and throughflow). In fact, it is intended
to design a stage working from the following information:
mass flow rate m =4 kg/s; pressure ratio 8pr = 1.60, Py, =
101.3 kPa, T, =300 K. The initial optimization procedure is
carried out with an objective function having the following
weights: G,=1.0; G.=0.0; G4=0.0, and with a higher con-
straint for a3 of 10 deg.
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Fig.11 Meridional section of the axial flow compressor stage optimized
with pitchline anaiysis (Part 1)

The meridional section optimized with such a procedure is
illustrated in Fig. 11; where the rotational speed is 39,500 rpm.
Optimized efficiency is equal to 0.91, the stall margin coef-
ficient is C, = 0.50, and the specific inlet area is 4,,= 170. The
radial distribution of the blade geometric characteristics, from
which the new design variables @ are obtained, was acquired
by hypothesizing the free vortex law for the rotor and inlet
section of the stator. For the stator outlet section, the angle
o3, Was chosen in a different way (see Fig. 12). Optimization
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results are shown and compared to starting values in the above-
mentioned figures.

As far as efficiency is concerned, it must be pointed out that
the value calculated with pitchline analysis differs from the
initial finding obtained with the throughflow calculation. This
latter, however, changes with the second optimization process
from 0.844 to 0.905, showing at the same time a sufficiently
rapid increase.

The entire calculation process requires approximately 2 min
of CPU with one-dimensional analysis and approximately 34
min for the subsequent throughflow optimization. All com-
putations were performed with a Burroughs B-6800 computer
at the University of Genoa.

Conclusions

The possibility of coupling techniques of simple fluid dy-
namic analysis (pitchline analysis) with procedures of numer-
ical optimization has been known for years, particularly in the
design of turbines. Moreover, the authors of this paper have
also shown the possibility of employing the process in the field
of axial flow compressors (Part I, Massardo and Satta, 1990),
where the need to operate with a multivariable objective func-
tion (efficiency, stall margin, stage weight) was found.

The obvious extension of the above optimization technique
to more sophisticated methods of fluid dynamic analysis, the
throughflow type for instance, has been presented in this paper.
The success of the new optimized design procedure is essentially
due to its swiftness — particularly in present applications —
and to the stability of the matrix technique chosen (suitably
modified so as to allow the evaluation of the zones of transonic
flow). Furthermore, it should be noted that the choice of design
variables used in previous works has been improved. The new
variables are coefficients of suitable polynomials that are em-
ployed to represent the three-dimensional geometry of the rows.

It is also clear that this last choice has permitted the sim-
plification of those values to be applied to design constraints,
and resulted in continuous results, both in a mathematical and
in a constructive sense (radial distributions of the blade angles,
the solidity, etc.).

The applications of the proposed procedure for redesign of
an existing transonic isolated rotor and for the complete op-
timum design of a transonic stage have been demonstrated.
The technique has shown remarkable swiftness in calculation,
ability to forecast accurately the initial characteristics, and a
rapid improvement of those data. The same holds true, as is
clear, particularly for the objective function (coinciding with
machine efficiency).

It must be observed that the findings obtained are obviously
correlated to the ability to forecast local phenomena (three-

410/ Vol. 112, JULY 1990

dimensional flow aspects) on the part of the fluid dynamic
analysis calculation. Throughflow methods, which have at-
tained widespread use, do not always represent the above phe-
nomena perfectly; however, they can be improved so as to
evaluate, for example, the annulus wall boundary layer flow,
secondary flow, etc. Moreover, computation times, stemming
from throughflow methods, remain quite contained.

The necessity, however, of the throughflow calculation for
the evaluation of losses and of the flow angle with semi-em-
pirical correlations, limits in a certain sense its general use. To
eliminate this point,'a feasible solution might be the coupling
of the minimization with an automatic iterative meridional and
blade-to-blade code, for instance, the example developed with
the aid of the CAD technique (Massardo et al., 1987). The
implementation of a similar method for the evaluation of the
objective function does in fact allow the recognition of the
downstream flow angle and, with suitable calculations of the
profile boundary layer, the losses, without resorting to the
correlations.

It is further possible that the optimization of the blade profile
shapes, beginning from the optimum radial distributions, can
be accomplished in a manner analogous to that used by Sanger
(1984).

All of the above offers a generalized design procedure with
which the blade row shapes can be attained. This fact, however,
renders the calculation extremely time consuming, complex,
and burdensome, at least at present. It is possible, on the other
hand, that with more rapid computers and numerical tech-
niques, the procedure may become feasible.
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aerodynamic characteristics for a rotating subsonic annular cascade of swept blades.
A discrete element method is used to solve the integral equation for the unsteady
blade loading. Numerical examples are presented to demonstrate effects of the
sweep on the blade flutter and on the acoustic field generated by interaction of
rotating blades with a convected sinusoidal gust. It is found that increasing the

sweep results in decrease of the aerodynamic work on vibrating blades and also
remarkable reduction of the modal acoustic power of lower radial orders for both
Sorward and backward sweeps.

Introduction

Recently ducted ultrahigh-bypass engines have been con-
sidered as an advanced propulsion system with attractive fuel
efficiency. In contrast to unducted propfan engines, the
ducted ultrahigh-bypass engines can be mounted under the
wings of large transport aircraft. The contrarotating propfan
engine with swept blades is one proposal for the ducted
ultrahigh-bypass propulsion system, and is considered to com-
bine the positive properties of a conventional turbofan with
the advantages of an unducted propfan (Grieb and Eckardt,
1986).

It is expected that incorporation of blade sweep in the
ducted fan would result in an improvement in noise reduction
similar to the unducted propfan. However, achieving the
benefit should require careful design on blade sweep, taking
into account the influence of a duct wall. The effect of the
sweep on the blade flutter is also one of the important aspects
that should be considered in the blade design. Hence an
analysis method to predict the unsteady aerodynamic
characteristics for swept blades in the duct is required.

At present the computational fluid dynamics for the
unsteady aerodynamic problems of high-speed ducted and un-
ducted propfans are still under development. In view of the
fact that high-speed propfans are composed of very thin
blades, the analytical approach based on the linearized lifting
surface theory will be justified as an efficient method to
predict the essential features of the three-dimensional
unsteady effects for propfans.

However, mathematical formulations, even if linearized,
become highly complicated due to the three-dimensional
geometry and the time-dependent flow field. Therefore only a
limited number of papers have treated the unsteady lifting sur-
face method for rotating blades. Hanson derived the lifting
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surface integral equations for the unducted propfan (1983)
and showed some numerical results for the steady problem
(1985).

As for the unsteady problems related to the ducted propfan,
there are some gvailable papers dealing with the unsteady
lifting surface theory for a rotating annular cascade of
unswept blades. Namba and Ishikawa (1983) showed the
three-dimensional effects on aerodynamic characteristics for
oscillating supersonic and transonic annular cascades, and
Namba and Abe (1984) dealt with the problem of interaction
with distorted inlet flow for supersonic and transonic annular
cascades. However, their analyses were restricted to unswept
blades with constant axial chord along the span mainly in
order to avoid difficulty in dealing with the integral equation
for the unsteady blade loading functions.

This paper gives an analytical method to predict the
unsteady aerodynamic characteristics for a rotating annular
cascade of swept blades using the unsteady lifting surface
theory developed by Namba et al. (1983, 1984). A discrete ele-
ment method is adopted to solve the integral equation for the
unsteady blade loading. Calculations have been carried out on
simple blade models to demonstrate effects of the blade sweep
on the unsteady lifting pressure of vibrating blades and on the
acoustic field generated by interaction of rotating blades with
inlet flow distortions. In the present analysis, only the case of
entirely subsonic flow is dealt with. The analysis for transonic
or supersonic cascades will be reported in future publications.

Theoretical Model

Consider a uniform axial subsonic flow in a cylindrical rigid
walled duct of infinite axial extent disturbed by a single an-
nular blade row with N blades rotating at a constant angular
velocity w* (Fig. 1). The fluid is assumed to be an inviscid and
non-heat-conducting perfect gas. The disturbances caused by
the blades are assumed to be small. Each blade has no steady
loading and no thickness.
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Fig. 1 A rotating annular cascade

A rotor-fixed cylindrical coordinate system (r, 8, z) and a
time coordinate ¢ are used. Lengths are normalized by the duct
radius r%, and times are normalized by r%/W,, where W, is
axial velocity of the undisturbed flow. Hence the dimen- it
sionless rotor speed w is defined by w=w*r/W,.

This paper deals with a blade flutter problem, where the
blades vibrate at a reduced frequency A( =N\*r%/W,) with an Fig. 2 Coordinate system
interblade phase angle & (=27g/N), and also deals with a
problem of interaction with a convected sinusoidal gust, where
the blades sense the incident gust with a reduced frequency denotes a helical coordinate. Further b, (p) and b, (p) denote
M(=N,w) and an interblade phase angle 6 (=2n(1-N,,/N)).  the axial positions of leading and trailing edges of the blade,
Here N,, denotes the circumferential wave number of the gust.  respectively, and X, (r, 8”, z— [ lp) is the pressure kernel func-
In both cases, the unsteady blade loading is expressed as tion defined in equation (2) of Namba and Ishikawa (1983).

Apg(r, zyeN+#e (k=0, 1,..., N—1). Then the rotor- A finite radial eigenfunction series approximation is applied
induced pressure field p(r, 6, z)e™ can be expressed in the  to the expression of pressure field given by equation (1), as has
form ) been shown by Namba et al. (1983, 1984). In the present paper
1 by(p) the radial eigenfunction specified by the circumferential wave
p(r, 8, z)= S dpg Apg(p, ) number 7 is expressed in terms of Rf*® (r) rather than R{% (r)
B doLte) (see Namba and Abe, 1984, and Namba, 1987)
XKp(r,ely Z_f‘lp)dg' (1) -1
Here p and ¢ denote radial and chordwise coordinates, respec- R (ry= E BB{PR= (1) )
tively, at a point on the blade surface, and ¢’ (=6—wz) k=0
Nomenclature
K, = pressure kernel function defined by
af® (r), af (r) = spanwise mode shapes of the jth equation (3)
order bending and kth order tor- K, = upwash kernel function defined by
sional vibrations equation (7)
BB{» = coefficients of the finite series ex- K? = K, expressed by the locally nor-
pansion of R, (r) in terms of malized axial coordinate
R, (r), equation (2) k{m = radial eigenvalues

~
[

b*(r, ) = defined by equation (21) or (22) number of retained terms in the
b, (r) = z coordinate of the leading edge finite radial eigenfunction series
br(r) = z coordinate of the trailing edge ! = radial order of an acoustic mode
CBf’ = coefficients of the series for M = axial Mach number

R{™ (r)/r? expanded in terms of N = number of blades
R (r) N, = circumferential wave number of a
C,(r) = axial length of the blade chord, convected sinusoidal gust
equation (13) n = pN+ o=circumferential wave
C, (r)y = z coordinate of the midchord, equa- . number of an acoustic mode
tion (14) p(r, 0, z)e™ = disturbance pressure
DBf" = defined by equation (4) Q = W,V1+w* r*=undisturbed fluid
E_, E, = dimensionless total acoustic power velocity relative to rotating blades
in upstream and downstream q,(r, 0', z)e™ = disturbance velocity component
propagation, respectively normal to blade surfaces
g = (z—NM?/82 g9 = upwash component of the disturb-
h = hub-to-tip ratio . ance velocity due to the bending
i=+v-1 vibration
412 [ Vol. 112, JULY 1990 Transactions of the ASME

Downloaded 01 Jun 2010 to 171.66.16.66. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



As shown in Figs. 3 and 4 of Namba and Abe (1984), R{*=) (r)
is dominant at r=1/k{=), and a finite sequence of 1/«§*,
1/k{®), , 1/k§=) is equally spaced between 1 (tip radius
and A (hub radius). Here «f*) are limit eigenvalues deter-
mined from equation (9) of Namba and Abe (1984) by apply-
ing Inl—oo. Because of these properties, a finite radial eigen-
function series approximation by R{™) (r) gives a clearer view
of the structure of the pressure disturbance, and also enables
one to give reasonable control points in the numerical integra-
tion described later.
Consequently, the pressure kernel function K,(r, 6

2z~ lp) is rewritten as

Kp(r, 0’; Z—flp)——
e’ngR(“’)(r) EW) (0)

4w
X E ema;& E e ") lz— (lBB(n)DB}n) (3)
where
j 2
DB = a {BB,(,{‘) 2 w(nw+)\)—-nCB(")}
~BBf{)w sgn(z—{) C))
g=(z—NM?/B;, ¢=0"+(z—{w/B7,
=1-M2?, n=vN+o
and
(Qf )2 =[(kf")? — (no+N)2M?/B31/B2 )
Qi =1Qf"1 for {QfM})2>0
(cut-off mode) > &)
QM =011 for (2™ }2<0
(cut-on mode) J

Furthermore M denotes the axial Mach number of the un-
disturbed flow, and k{™? = n2¢{"?, CB{" are coefficients of a

series for Rf™ (r)/r* expanded in terms of R{™®) (r). The
details of the mathematical metod are given by Namba (1987).

Integral Equation

The yelocity component normal to the blade surfaces g, (r,
6', z)e™ can be obtained by integrating the linearized equa-
tion of motion. The resultant expression is

Sl i SbT((p) ApB>(p, 0

XK, (r, 0, z—¢lp)d¢ 6)

where p, denotes the undisturbed fluid density, Q=W,
V1 +w?r? is the undisturbed local relative velocity, and the K
(r,0',z—{lp) is the upwash kernel function given by

1
Q‘r(ra 0/’ Z)Z
PoQ Ja

z
KT(r’ el,z_§-|p):_e—i)\zg ei)\z

— oo

1 o ad
><l:(_r__a7 _wra—>K (r, 0—wz, 2= $10)gmp’ vy A2 (7)

The unsteady blade loading Apjg (p, ¢) has to be determined
so that the normal component of the relative velocity to the
blade surface is zero. In the case of vibrating blades, the
boundary condition on the reference blade is expressed as

q,(r, 0, 2) =W, (iN+3/32)n(r, 2) &)

where n(r, z)e™ is the displacement of the reference blade
normal to its surface. For the case of interaction with a
sinusoidal gust

q.(r, 0, 2) + (" (r, 0, z)e~ M= =0 ©)

Here G (r, 0, z)e™ denotes the upwash component of inci-
dent disturbance velocity with no rotation and no radial skew
given by

g™ (r, 0, 2) = —e W, w(ryor/N 1+ w?r? (10
Combining equation (6) with equation (8) or (9) yields an in-
tegral equation for the lifting pressure Apg (p, {).

Discrete Element Method
Nambea et al. (1983, 1984) have applied a double mode func-

Nomenclature (cont.)

G = upwash component of the incident
disturbance velocity

Rf™ {ry = radial eigenfunctions
ry = radius at the blade tip
(r, 8, z) = cylindrical coordinate system fixed

to the rotor

dimensionless acoustic power of
mode (», /) in upstream and
downstream propagation,
respectively

time

dimensionless total aerodynamic
work on a blade in the jth order
bending and kth order torsional
vibrations, respectively

axial velocity of the undisturbed
fluid

locally normalized axial coordinate,
equation (20)

1-M?

blade sweep angle (backward sweep
positive)

pressure difference across the
reference blade ‘

S_ (D, S, (nh =

t
W, Wi

NS
T

k=)
™
([

I

Apg(r, z)e™

Journal of Turbomachinery

Ap} = App expressed by the locally nor-
malized axial coordinate
6; = Kronecker delta
¢ = axial coordinate at a point on a
blade surface
{ = locally normalized axial coordinate
at a point on a blade surface, equa-
tion (12)
n(r, z)e™M = displacement of the reference blade
normal to its surface
6’ = 6—wz=helical coordinate
kM = ki /n
A = dimensionless angular frequency
p = radial coordinate at a point on a
blade surface
po = undisturbed fluid density
& = 2mwo/N=interblade phase angle
¢ = 0"+ (z—-{w/B2
Qf" = axial wave factor defined by equa-
tion (5)
w = dimensionless angular velocity of
the rotor
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Fig. 3(a) Radial variation in the magnitude of the local unsteady lift
coefficient for the first-mode bending vibration
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Fig. 3(b) Radial variation in the argument of the local unsteady lift
coefficient for the first-mode bending vibration

tion method to solve the integral equation for the unsteady
blade loading by expressing Apg (p, ¢) in terms of the double
series of radial mode functions and chordwise mode func-
tions. In the case of unswept blades with constant axial chord
along the span, where b, (o) and b;(p) are constant, the
radial integration in equation (6) can be carried out analytical-
ly using the relation
1

[ rr R (ar=s, 1)
Here §,, denotes Kronecker delta. In the case of swept blades,
however, the analytical integration cannot be applied because
the relative axial position of the blade varies with radius.

414/ Vol. 112, JULY 1990

08 0.9

r

Fig. 4(a) Radial variation in the magnitude of the local unsteady force
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Flig. 4(b) Radial variation in the argument of the local unsteady force
moment coefficient for the first-mode torsional vibration

Therefore there is no advantage in expanding Apy (e, ¢) in
terms of the radial eigenfunction series. Hence, in the present
analysis, the integral equation is solved numerically by apply-
ing a discrete element method:

_ The discrete element method consists in determining Ap} (p,
$) at a finite number of load points.

(o> £ i=1,2,..., L j=1,2,...,J
where ¢ is the locally normalized axial coordinate defined by
§={5=Cy(p)1/Cy(p) (12)
Here
Co(p)=br(p)—b.(p) (13)
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Cu(p) = (b, (p) +br(p))/2 (14

In the case of subsonic flows Ap} (e, §) is infinite at the
leading edge and Apj (p, 1/2) =0 at the trailing edge due to the
Kutta condition. Therefore it will be better to set

Y A
S Ao, =P, c)/ i

and determine numerical valués of P(p, {). Consequently
P(p, ¢) is allowed to take a finite value at the leading edge and
P(p, 1/2)=0 at the trailing edge. Then using numerical in-
tegrals like

1s)

1

172
|7 sorae= Yraag

i=1

(16)

1 J
|, 70ydo— Y 100,80, a7
j=1

one can write the integral equation for the lifting pressures as

J 7 5.

P(o, &;
E Ca(pj)Apj E M
j=1

i=1

XK (rg, 0, 8(Zq, 1) —&(5ir 0;) 10))AS

=b*(rg, Z,) (1 +w?rd) (18)
where
8(Z, r)=C(rz+Cy(r) 19
Z=(z2—Cy(r))/C,(r) (20
and
) ) 1 ]
b*(rg, 2,) = {z)\+ W —a?}
X0*(rg, 8(Zg, 13)) /N1 +wirg @1
(for the case of vibrating blades)
b*(rg, Z,) =ew(rg)org
e N8 /(1 4 ) 22)

(for the case of interaction with a convected sinusoidal gust)
It is reasonable to take /=L, and

p;=1/k§%) j=1,2,...,L
8=1,2,...,L
for the reason that each Rf®(r) is dominant at r=1/xf>) as

described before. As to selection of Z, and §;, the so-called
‘“1/4-3/4”’ rule has been chosen.

(23)
rg=1/k§7)

Numerical Results and Discussion

Practical swept fan blades are likely to have curved leading
and trailing edges. The present study, however, is confined to
swept blades with straight leading and trailing edges and with
constant axial chord length along the span in order to focus at-
tention on the effects of sweep on the unsteady aerodynamic
characteristics. The other parameters are fixed as follows:
number of blades N=30, dimensionless speed of the rotor
w=2.4744, hub/tip ratio 2=0.7, dimensionless axial chord
length C,(r)=by(r)—b,(r)=0.0667, and the axial Mach
number M =0.3. The midchord line C,,(r) defined by equa-
tion (14) is expressed as

Cy(r)y=(r—nh) tanvy 24)

Here v denotes the sweep angle of a blade projected on the
meridional plane.
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In all cases the numbers of radial collocation stations L =7
and chordwise load points /=11 are used.

Vibrating Blades. In the present paper, parametric studies
are carried out by changing the sweep angle. In actual cases
the blade natural frequencies would decrease with sweep,
because the blade span becomes longer with increasing sweep.
The vibration modes also would become more complex with
increase in the sweep angle. In order to avoid effects other
than the blade sweep on the unsteady aerodynamic
characteristics, we assume that the blade frequencies and the
vibration modes are independent of the sweep angle. The
dimensionless frequency and the interblade phase angle
parameter are taken as A=3 and o =6, respectively. Here two
types of vibration modes are considered: the case of pure
bending where the circumferential dispacement of a reference
blade is given by HC, (r) af® (r) e, i.e.,

n(r, 2) =HC, (r)af?) (r) N1+ o?r? 25)

and the case of pure torsion about the midchord point ¢, (r)
where the twist angle of a reference blade is given by
Qafl (rye™

n(r, z) =0af’ (r) N 1+ 0™ (z—Cp(r)) (26)

Here H and O denote the displacement and angle amplitudes
at the blade tip, respectively, and af?’ (r) and af” (r) denote
the spanwise mode shapes of the jth order bending and kth
order torsional vibrations, respectively. The natural mode
shapes of a uniform cantilever beam are assumed.

Figures 3(a) and 3(b) show the local unsteady lift coeffi-
cient for the first mode bending vibration of unit amplitude
H=1. The local unsteady lift coefficient is defined by

CIP (r) =L(r)/ (mpoQ(r)C*G{") @7

where
G =ieNC, (r)af® (r)Q(r)/ (1 + w?r?) 28

and L (r) is the local unsteady lift force per unit span. In addi-
tion, C*=r% C,(r)v1+w?r? denotes the local chord length.
Generally the unsteady lift force decreases as the sweep angle
increases for both forward and backward sweeps. Especially
for the backward sweep, the reduction in the unsteady lift
force becomes more remarkable toward the hub, and the
radial variation of the local unsteady lift coefficient becomes
smaller. In general, incrasing the sweep angle |yl results in
decrease of the phase of the unsteady lift coefficient, i.e., Arg
[C§ ()]

Figures 4(a) and 4(b) show the local unsteady moment
coefficient for the first mode torsional vibration of unit
amplitude © =1 defined by

CiP (1) =M (r)/(mpo Q* () C*?af” (r)) (29)

where M (r) denotes the local unsteady moment per unit
span about midchord. A similar tendency as seen in C{? (r)
for the bending modé vibration is observed in C{? (r). Again
the distinctive reduction of the local unsteady moment near
the hub with increasing sweep is seen for the backward sweep.

Figures 5 and 6 show the effect of the blade sweep on the
total aerodynamic work coefficients for the first-mode bend-
ing vibration W{® and the first-mode torsional vibration W{")
defined by equation (51) of Namba and Ishikawa (1983). For
both forward and backward sweeps, the blade vibrations are
stabilized drastically at large sweep angles.

Interaction With a Sinusoidal Gust. Any arbitrary cir-
cumferential wake profile can be decomposed into pure har-
monic components. Because of the linearized nature of the
analysis, one can carry out the calculation for each component
and sum the solutions. In the present analysis, the calculation
is conducted for only one component to study the effects of
blade sweep. The sinusoidal component of the circumferential
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Downloaded 01 Jun 2010 to 171.66.16.66. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



0.05

W;b)

-0.05

-0l 1 1 1 1 1
-30 0 30
Y (DEG)

Fig. 5 Effect of sweep angle on the total aerodynamic work coetficient
for the first-mode bending vibration
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Fig.6 Effect of sweep angle on the total aerodynamic work coefficient
for the first-mode torsional vibration

wave number N,, =20 is selected. Hence it is determined that
A=49.488 and o=10. Furthermore the incident disturbance
flow velocity is assumed to be of constant amplitude w(r) = 1.

Figures 7(a) and 7(b) show the radial variation in the local
unsteady lift coefficient defined by

CP (r) = —L(r)/ (mpoQ(r)C*g{™) (30

It can be seen that the overall unsteady lift force becomes
small at large sweep angles, i.e., v = + 30 deg or —30 deg. It is
worth noticing, however, that the local unsteady lift force
becomes large near the hub for larger forward sweep and near
the tip for larger backward sweep.

Figure 8 shows the axial components of the total and modal

416 / Vol. 112, JULY 1990
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Fig. 7(a) Radial variation in the magnitude of the local lift unsteady
coefficient for interaction with a convected sinusocidal gust
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Fig. 7(b) Radial variation in the argument of the local unsteady lift
coefficient for interaction with a convected sinusoidal gust

acoustic powers calculated in the same way as shown by Nam-
ba (1977). In the figure, the subscripts + and — denote
downstream and upstream propagation, respectively, and E . ,
E_,S, (v,1),and S_ (v, ) are normalized by (n/4)r% po W3

. €2. A remarkable reduction in the acoustic power is attained

by increasing Iyl beyond 12.5 deg. There are two main
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Fig. 8(a) Effect of sweep angle on the total and modal acoustic powers

reasons for this phenomenon. One is the reduction of Apy
itself as the dipole sound source, and another is the reduction
of modal acoustic powers of lower radial orders in the cut-on
state.

It is worth noting that distinctive increase of the (0, 1) mode
power gives rise to sharp peaks of the total acoustic power
near lyl=12.5 deg.

Conclusion

The local unsteady blade force due to blade vibration
decreases as the sweep angle increases for both forward and
backward sweeps. The reduction in the unsteady blade force
near the hub is distinctive for large backward sweep angles.

Consequently the total aerodynamic work is reduced con-
siderably at large sweep angles. This can be seen noticeably in
the aerodynamic work for the torsional vibration.

Remarkable reduction in the acoustic power generated by
interaction with a convected sinusoidal gust is also attained at
large sweep angles for both forward and backward sweeps.

It can be said that the adequate blade sweep is a great ad-
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Fig. 8(b) Effect of sweep angle on the total and modal acoustic powers

vantage for both blade flutter suppression and noise
reduction.
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Surface Injection Effect on Mass
Transfer From a Cylinder in
Crossflow: A Simulation of Film
Cooling in the Leading Edge
Region of a Turbine Blade

A naphthalene sublimation technique is used to study the effect of surface injection
on the mass (heat) transfer from a circular cylinder in crossflow. Using a heat/mass
transfer analogy the results can be used to predict film cooling effects in the leading
edge region of a turbine blade. Air injection through one row of circular holes is
employed in the stagnation region of the cylinder. Streamwise and spanwise injec-
tion inclinations are studied separately, and the effects of blowing rate and injection
location relative to the cylinder front stagnation line are investigated. Streamwise in-
Jection produces significant mass transfer increases downstream of the injection
holes, but a relatively small increase is observed between holes, normal to the injec-
tion direction. The mass transfer distribution, measured with spanwise injection
through holes located near the cylinder front stagnation line, is extremely sensitive
to small changes in the injection hole location relative to stagnation. When the
centers of the spanwise injection holes are located 5 deg or more from the stagnation
line, the holes lie entirely on one side of the stagnation line and the injection affects
the mass transfer only on that side of the cylinder, approaching the pattern observed
with streamwise injection.

J. Karni?

R. J. Goldstein

Department of Mechanical Engineering,
University of Minnesota,
Minneapolis, MN 55455

Introduction

Application of film cooling through a single row or multiple the blade surface, with various coolant injection configura-

rows of circular holes is common in gas turbine systems. The
need to improve performance by increasing turbine inlet
temperature, without shortening the components’ lifespan,
has prompted a large number of studies aimed at a better
understanding of the complex flow and heat transfer
mechanisms involved in film cooling (see Metzger, 1983). Ad-
vanced materials such as nickel superalloys and various
ceramics, which are used in modern turbines (Kear, 1986),
have, in general, relatively low thermal conductivity and dif-
fusivity. Thus, large local variations of the heat transfer coef-
ficient can produce significant temperature gradients in the
wall of a turbine blade. These gradients may cause high ther-
mal stresses and ultimately could lead to blade failure. An ef-
fective film cooling design must reduce the temperature gra-
dients over the surface, as well as the mean wall temperature.
Therefore, knowledge of the heat transfer distribution over

Tpresent address: The Weizmann Institute of Science, Rehiovot 76100, [srael.

Contributed by the International Gas Turbine Institute and presented at the
34th International Gas Turbine and Aeroengine Congres and Exhibition,
Toronto, Ontario, Canada, June 4-8, 1989. Manuscript recived at ASME Head-
quarters February 14, 1989, Paper No. 89-GT-276.
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tions, is necessary for a successful turbine design.

Two methods have been developed to predict film cooling
effects on heat transfer. The first method (Eckert, 1983;
Goldstein, 1971) defines the heat transfer coefficient with an
adiabatic wall temperature

qwzhH(Tw_Taw) (1)
For a constant property flow, the heat transfer coefficient A,
is independent of the temperature difference 7T, —7,,. A

dimensionless adiabatic wall temperature, known as the film
cooling effectiveness 7 is given by

_ Taw - Tr
= TZ - Tr
For low-speed constant property flows 7, =T,,, and
To—T.
L 2
=TT, -T. @

In this method, the heat transfer coefficient and the effec-
tiveness are determined separately. Then, for any given
mainstream and coolant temperatures and a prescribed wall
heat flux, the wall temperature distribution can be obtained
using equation (1).
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In the second method (Metzger et al., 1968; Choe et al.,
1974) the heat transfer coefficient is defined by the equation

qy=h"(T,—T,) 3

This approach provides a direct means of determining heat
transfer coefficients for film cooling on an isothermal surface.
Here, the heat transfer coefficient 4’ is not independent of the
temperature difference T,,— T, ; but as shown by Metzger et
al. (1968), Metzger and Fletcher (1971), and Eckert et al.
(1971), for a constant property flow, 4’ varies linearly with
the dlmensmnless temperature

f* = _TZ_TE_ @

Tw - Too

Note that unlike A, the coefficient #’, defined by equation
(3), can take on unusual (e.g., negative) values, especially
close to an injection location. The coefficients 4, and s{ ob-
tained on an isothermal surface for 6* =0 and 1, respectively,
can be used to approximate heat transfer coefficients on a sur-
face where gradual temperature variations take place (Eckert,
1983). In that case

h,=hy (5)
and the relation between 4’ and 6* is given by
h ’
— =1-n0* 6
hy n ©

In various studies (Metzger and Fletcher, 1971; Miller and
Crawford, 1984; Ligrani and Camci, 1985) values of A and 7
were approximated from A’ and 6* data using a linear ex-
trapolation based on equation (6).

Values of the heat transfer coefficient 4, for two-
dimensional slot injection across the span of a flat plate are
presented by Hartnett et al. (1961a, 1961b). Their data show
relatively large coefficients near the injection slot; as the
downstream distance from the slot increases, hy quickly
declines, approaching the coefficient obtained without injec-
tion. Measurements of heat transfer coefficients averaged
across the test surface are reported in some studies of three-

Nomenclature

dimensional film cooling from a single row and multiple rows
of circular holes (Metzger and Fletcher, 1971; Mayle and
Camarata, 1975; Liess, 1975; Metzger et al., 1976; Lander et
al., 1972; Ligrani and Breugelmans, 1981). Effects of
parameters such as injection geometry, blowing rate, pressure
gradient, and boundary layer transition on variation of
spanwise-averaged coefficients in the mainflow direction were
investigated in these studies.

Local heat transfer coefficients (hy) over a film-cooled
plate with one and two rows of injection holes were measured
by Erikserr and Goldstein (1974) and Jabbari and Goldstein
(1978). Mick and Mayle (1988) measured local 4, values using
two rows of spanwise injection holes located 15 and 44 deg
from the stagnation line of a blunt body with a circular leading
edge, followed by a flat section. Local measurements near the
leading edge of a turbine vane and on the front portion of a
cylinder were conducted at Purdue University by Hanus and
L’Ecuyer (1977), Luckey et al. (1977), Luckey and L’Ecuyer
(1981), and Bonnice and L’Ecuyer (1983). In these studies 4’
values were obtained near the center of the wind tunnel
(cylinder midspan). Spanwise injection through one to five
rows of holes was employed.

In an experimental setup where significant temperature dif-
ferences exist (Ericksen et al., 1974; Jabbari et al., 1978; Mick
et al., 1988; Hanus et al., 1977; Luckey et al., 1977, 1981;
Bonnice et al., 1983) wall conduction makes it difficult to
maintain the imposed boundary condition (7T, =const or
q,, = const) near the injection holes and close to the edges of
the test surface. Consequently, in several studies the analysis
between heat and mass transfer was utilized to obtain transfer
coefficients on flat surfaces (Hay et al., 1985a, 1985b; Gold-
stein and Taylor, 1982; Kumada et al., 1981). The last two
studies demonstrated how mass transfer using naphthalene
sublimation can provide contours of local transfer coefficients
on a flat plate near the holes of single-row and multiple-row
injection geometries.

When naphthalene sublimation is used, a direct analogy to
the adiabatic wall heat transfer coefficient (#y) defined by

diameter of the test cylinder =63.5 mm in present

study

injection tube inner diameter =5.95 mm

mass diffusion coefficient for naphthalene vapor in

air; taking Sc=2.5 (Sogin, 1958), D;=»/2.5. [Note

more recent studies by Chen (1987) and Cho (1989)

indicate a smaller value of Sc and D;. This would

not affect the relative values of the mass transfer

coefficient and Sherwood number with and

without blowing.]

local convective heat transfer coefficient

reference mass transfer coefficient = 4, without

surface injection

adiabatic wall heat transfer coefficient for film

cooling applications=gq,,/(T,, — T,,)

local mass transfer coefficient =ri1/p, ,,

isothermal wall heat transfer coefficient for film

cooling applications=gq,,/(T,, — T, )

= isothermal wall heat transfer coefficient for a
situation where 0* =0 (i.e., T, =T,)

h{ isothermal wall heat transfer coefficient for a

situation where 8* =1 (i.e., T,=T,)

shape factor =6*/6,

conductivity

length of test cylinder (also, height of the wind

tunnel) =305 mm in the present study

L
o

bl
&
o

=
o~
|

I

~ox g
Wi
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local naphthalene mass transfer rate per unit area
of the cylinder surface

blowing rate=p,U,/pq4 U,

vapor pressure of naphthalene determined using
the method by Ambrose et al. (1975)

local vapor pressure of naphthalene at the cylinder
surface averaged over the time of exposure in the
wind tunnel

wall heat flux

gas constant for naphthalene (universal gas con-
stant divided by molecular weight of

naphthalene = 128.19)

spanwise distance between centers of injection
holes

thickness of naphthalene layer

temperature

T, reference temperature

adiabatic wall temperature

T, free-stream recovery temperature

%} :”Q :U‘ :U i 3
I [l I I

N~
o

T, = wall temperature
T, = film coolant temperature at the point of injection
T, = mainstream temperature

T = local temperature of naphthalene surface averaged

over exposure time in the wind tunnel
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equation (1) leads to the following definition of a mass
transfer coefficient:

m

hm = (7)
(pu,w _pv,i)
Alternatively, a relation equivalent to equation (3) gives
m
hp= ——= ®)
(pu,w - pu,oo )

In the naphthalene sublimation technique used in the
present study a nearly uniform vapor density is maintained
over the entire cylinder surface, and the naphthalene vapor
concentration in the mainstream and in the injected gas is
zero. This is equivalent to isothermal boundary conditions
with T, =T, (or §*=0). Thus, equations (7) and (8) both
reduce to

m
[)U.W

In the present study local mass transfer coefficients are ob-
tained around the entire circumference of a circular cylinder
and along a span containing five injection holes (in a single
row). Spanwise and streamwise inclined injections are
employed at blowing rates of 0.5, 1.0, and 2.0. The injection
location is varied relative to the cylinder’s front stagnation
line. In each test run, measurements are taken at about 3800
local points over the cylinder surface. Thus, exact details of
the mass transfer distribution pattern are revealed. Injection
geometry and blowing rate effects in the region away from the
base of the cylinder, where endwall effects on the flow are
relatively small, are reported here. The injection effects near
the endwall will be reported later.

h, =

m

(9a)

Experimental Apparatus and Measurement Techniques

The primary objective of the experimental apparatus is to
provide a means of determining the local rate of naphthalene
sublimation from the cylinder surface during exposure to an

Nomenclature (cont.)

air flow. This local mass transfer rate is then expressed in
terms of the coefficients A, and the Sherwood number.
Detailed descriptions of the experimental apparatus and the
measurement procedure are given by Karni (1985). The max-
imum measurement error in obtaining 4, is 6 percent.

The test cylinder (¢ =63.5 mm) is shown in Fig. 1; a portion
extending over about 60 deg of the cylinder circumference and
along its entire naphthalene-covered span is removed [see Fig.
1(a)] and two sections with different injection inclinations are
made to fit in that region [Figs. 1(b) and 1(c)]. During tests
the cast naphthaléne layer-covers the outer surface of the sec-
tion used as if it were an integral part of the cylinder. Teflon
(Polytetra-Fluoro-Ethylene) injection tubes are installed in
these sections; in one section, the tubes are inclined such that
the injected air enters the mainstream at a spanwise angle of 20
deg to the cylinder surface [Fig. 1(d)]; in the other section, the
tubes are angled 37 deg to the surface in the streamwise direc-
tion [Fig. 1(c)]. All injection tubes have an inside diameter of
5.95 mm and a wall thickness of 0.35 mm. They extend 1.0
mm out of the section surface and thus are flush with the
naphthalene layer outer surface. The injection holes extend
over an angular range of 18 and 10.5 deg of the cylinder cir-
cumference for streamwise and spanwise injection, respective-
ly. If the injection tube’s wall thickness is included, these
angles become 20 to 12 deg, respectively. The ratio of cylinder
diameter to injection hole diameter (d/D = 10.67) is similar to
that used in the leading edge of many turbine vanes. The hole
diameter is of the same order of magnitude as the cylinder
boundary layer (see Karni, 1985).

During its exposure to the air stream, the test cylinder is
positioned vertically in the middle of the tunnel’s cross sec-
tion, about 450 mm downstream of the test section inlet; the
blockage ratio is 0.104. The naphthalene-covered portion of
the cylinder extends from about 6.7 mm below the tunnel’s
bottom wall to 260 mm above it (about 45 mm below the top
wall). The secondary (injected) air flow is supplied by a com-
pressor. To insure a steady flow of dry air in the injection
system, the secondary air is filtered and passes through two

Tu = turbulence intensity
U, = mean velocity in injection tube
U. = mean velocity of mainstream
W = width of test section
x = direction along the tunnel test section

x’ = downstream distance from downstream edge of in-

jection holes

direction along the cylinder center line; y=0 on

the tunnel bottom wall

y’ = upward distance along the span of the cylinder
measured from center of injection holes

z = direction across the tunnel test section; z=0 on the
cylinder centerline
o; = streamwise angle between the injection hole
centerline and loal cylinder surface, either 37 or 90
deg in this study
B8; = spanwise angle between the injection hole
centerline surface, either 20 or 90 deg in this study
6* = displacement thickness of endwall boundary layer
just upstream of the cylinder
At = change in local naphthalene thickness due to ex-
posure in the wind tunnel
Ar = time of cylinder exposure in wind tunnel
n = film cooling effectiveness for an adiabatic wall,

n=(Taw—-Too)/(T2_Too)

420 / Vol. 112, JULY 1990

angle around the cylinder measured from the front
stagnation point, degrees

i = angular location of injection hole center relative to
cylinder front stagnation point, degrees

0* = dimensionless temperature=(7T, - T, )/ (T, — T4 )
u = dynamic viscosity of air
v = kinematic viscosity of air=pu/p
p = density of air
ps = density of solid naphthalene=1.145 g/cm? (Karni,
1985)
p,; = density of naphthalene vapor at an inactive (non-
subliming) surface, zero in this study
byw = local naphthalene vapor density on the cylinder

surface averaged over exposure time in the wind
tunnel

Py = density of naphthalene vapor in the mainstream,
zero in this study

Dimensionless Parameters
Nu = local Nusselt number = hd/k

Re = Reynolds number based on cylinder
diameter = U_d/v
S¢ = Schmidt number =»/D,
_Sh = local Sherwood number = #,,d/D;
Shy, = spanwise-averaged Sherwood number at a given

angle
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Fig. 1 (a) Test cylinder without removable section; (b) removable section with spanwise injection holes; (¢c) removable section

with spanwise injection holes (all dimensions in mm)

flow regulators. It then flows through a calibrated orifice and
a temperature-control device. The difference between the
mainstream and secondary air temperatures is within 0.25°C
in all test runs. To prevent flow rate variations from one injec-
tion hole to another, the secondary air enters the test cylinder
(d=63.5 mm) through a long narrow slit cut along the span of
25.4 mm o.d. aluminum tube. This tube is attached to the
secondary air line on one end and is sealed on the other. It is
mounted inside the test cylinder, extending over most of its
span. The uniformity of the injected air flow rate was verified
experimentally (Karni, 1985).

The time of exposure in the wind tunnel (A7) is between 35
and 70 min (depending on operating conditions). During tests
0.020-0.13 mm of naphthalene sublime from the cylinder sur-
face. Since the mainstream and the injected air contain no
naphthalene vapor, the local mass transfer coefficient is

} At/A
hym o = BT ©9b)
Py,w Py,w
where
p
- — U_ 10
Pow R T (10)

The results can be expressed in terms of the local Sherwood
number

)

Operating Conditions

The various operating conditions are specified in Table 1. In
all the test runs, the free-stream velocity and the Reynolds
number are within 2 percent of the values given in the table.
The mainstream turbulence intensity is measured while the
cylinder is out of the wind tunnel.
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Table 1 Operating conditions

Free stream Endwall boundary

layer
Re,; =76,000 8*=2.23 mm
Ueo=19.16 m/s 0, =1.56 mm
Tu=0.45 percent H=1.43

Cylinder diameter, d=63.5 mm
Injection hole diameter, D=5.95 mm
Blockage ratio, d/W=0.104
Aspect ratio, L/d=4.8

Streamwise injection Spanwise injection

a;=37deg  $;=90 s/D=3 «;=90deg §,=20 s/D=6
deg deg
M Oinj (deg) M Oin; (deg)
0.50 10 0.50 1
0.50 20 0.51 3
0.50 30 0.50 5
1.01 10 0.99 2
1.02 10! 1.00 3
1.01 20 1.01 3!
1.00 30 0.99 7
1.99 10 2.00 0
2.01 20 2.01 1
1.99 30 1.99 5

ITest runs where the lower edge of the first injection hole is located
1.0 hole diameter above the endwall. In all the other tests, the lower
side of the first injection hole is adjacent to the tunnel bottom wall.

In all the tests, measurements are conducted over a span
containing five injection holes (including the region im-
mediately above the endwall) and around the entire cylinder
circumference. Spanwise injection is directed toward the
endwall.
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Fig.2 Sh distribution for streamwise injection: contours of Sh x 10~ 2,
a; =37 deg; 8; =90 deg; Oinj =10 deg; s/D=3

Results

I Streamwise Injection. The Sherwood number distribu-
tions for a streamwise injection angle, «;, of 37 deg, an injec-
tion location #;,; of 10 deg, and blowing rate M of 0.50, 1.0,
and 2.0, are shown in Figs. 2(a), 2(b), and 2(c), respectively.
These (and all other) computer-drawn contour plots are ob-
tained from the actual measurements around the entire
cylinder circumference and over part of its span. The dif-
ference between adjacent contour lines corresponds to a Sh
change of 200. The injection holes are shown by the shaded
regions in the left-hand side of each figure. Since the measure-
ment points located nearest each hole are not evenly
distributed around its periphery, the contour lines very near
the holes are somewhat distorted during the computer drawing
process and do not follow the exact shape of the hole where
Sh=0.

Figure 2 demonstrates that the injected air jets produce
large Sh values and steep local gradients downstream of the in-
jection holes while a relatively small increase in Sh is seen be-
tween the holes. The contours clearly indicate the flow pattern
near the injection holes. Somewhat similar mass transfer
trends were reported in studies of streamwise injection over
flat plates by Hay et al. (1985a), Kumada et al. (1981), and
Goldstein et al. (1982). Goldstein et al. (1982) observed larger
increases of Sh between injection holes on a flat plate. The
present data show that the region downstream of each hole,
where the injected flow has a relatively large effect, increases
with increasing blowing rate, but is generally limited to the
front portion of the cylinder. At y/d<0.5, the spanwise
pressure gradients, created by the endwall boundary layer in
the cylinder’s front stagnation region, divert the jets of the
lower injection hole toward the tunnel wall.

Figure 3 shows angular variations of Sh at selected spanwise

distances from the center of an injection hole located far from
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Fig. 3 Angular variations of Sh at slected spanwise distances from the
center of an injection hole M =0.50; «; = 37 deg; 8j; =10 deg

the endwall for ;=37 deg, M=0.50, and 6, = 10 deg. The
circumferential Sh distribution measured over a cylinder with
no injection holes is also shown in this figure. The spanwise
distance from the hole’s center is denoted by y’. The location
of a given y’ with respect to the injection hole is shown in the
inset at the top right corner of Fig. 3. Immediately
downstream of the hole’s centerline (y’'/D=0), Sh is more
than three times its value without injection. As y’/D and/or
increase, Sh decreases sharply. Figures 2 and 3 show that Sher-
wood number values measured upstream of an injection hole’s
centerline and-on the opposite side of the cylinder symmetry
line are nearly unaffected by the injection jets; the mass
transfer pattern in these regions is similar to that measured by
Karni (1985) over a cylinder with no injection holes.
Variations of spanwise average Sherwood number, Shg,,
around the cylinder for «; =37 deg are presented in Fig. 4. The
Sh distribution obtained far from the endwall on a cylinder
with no injection holes is also shown in this figure. The
spanwise-averaged coefficients confirm the trends seen in
Figs. 2 and 3 (local Sh distributions). Maximum Sh values
showing an increase of 2-3 times over the mass transfer
without injection are observed immediately downstream of the
injection holes. In the region most influenced by injection

Transactions of the ASME

Downloaded 01 Jun 2010 to 171.66.16.66. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



T ° -
(a)
14987 & BLOVING RATIOSE.S run 1 = —e — Tnj. Hole
T & BLOVING RATIO=S.S run 2
1200}~ @O BLOVING RATIO=1.B run S Sh ¥ITHOUT THIECTION inj = 1°
. L ¢ BLOYING RATIO=1.8 run 8
° lece— ¢ BLOWING RATIO=2. 8 run 8 §
E f—
2 god ¥
v -
Q
0
®
§ )
'z 180
u
(b}
—1"9!6 -i58 -1ii@ ~79 -39 ip 50 [:1' 130 172 Binj = 3°
Theta
(b) 8:in = 20°
inj
- 7
1400—
O BLOWING RATIOD®8.S run 3 ::,“‘:“"“ Nt 180
12a0l— A BLOWING RATI0=1.8 run B - T . Hole
D BLOWING RATIO=2.8 runl@ o ()
(8
T o000/ &
2 - a8 0 o®
] o = 5o
Z  seal— o 4 a
o & "o o
Qe a a
{9  soml— I:5 ao®
¢ a 8 a7 506
] FhoQ A 8 ©a
£ @ o [e]
n 408|— a8 o A A b,
L & 09 O,
20— I | °
_ ) |
5 NS T NN (N T AN T N N N N N RN B W 180
-190 -158 -11@ -76 -3n 12 5@ ag 138 170 8
Thata Fig. 5 Sh distribution for spanwise injection; contours of Sh x 10‘2,
M =0.50; o; =90; 8; =20 deg; s/D=6
(c 8.2 = 30°
) inj
1428 inj
O BLOVING RATIOSRS rum 4 . 1o ate e J
A BLOVING RATIO=1,B run 7 )
1280 g BLOWING RATIO=2. B runll a
"' IBBB_ 4
L Y Y
T L &
z o
0
0
0
¥
L
1]
L
w
-i198 -158 -118 -78  -3p 18 E) 88 138 179
Theta

Fig. 4 Spanwise-averaged Sherwood number (Shg,) distribution for
streamwise injection: «; = 37 deg; 8; =90 deg; s/D = Cf

(0in; <0<120 deg), Shy, values located immediately
downstream of injection fall sharply as 4 increases, reaching a
minimum near the laminar boundary layer separation angle
(6 = 80-90 deg); a second peak is observed at 6 =110-120 deg.
At 80 deg<6<180 deg, Shy, has a pattern similar to a Nu
(Sh) distribution over an impermeable circular cylinder at
critical and supercritical Re,; (Schmidt and Wenner, 1941;
Giedt, 1949; Achenbach, 1975; Sogin and Subramanian,
1961). At high Reynolds numbers (Re,>2x10°), the
downstream portion of the cylinder boundary layer becomes
turbulent, producing a sharp increase of heat (mass) transfer,
and the separation angle is between 110 and 150 deg. It is
possible that the additional momentum supplied by the jets
causes a delay in the boundary layer separation, and over
some portions of the cylinder span a transitional or turbulent
boundary layer exists at #~=90-130 deg.
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]
9 180
Fig. 6 Sh distribution for spanwise injection; contours of Sh x 10‘2,
M =2.00; «; =90; 8; =20 deg; s/D=6

Figure 4 shows that on the side of the cylinder where no in-
jection is employed (6<0 deg) Shg, is similar to the im-
permeable wall coefficient over the front of the cylinder; but,
for M=1.0 and 2.0, Shy, is somewhat lower than this coeffi-
cient in the wake region. At 6;,; =30 deg, relatively low Sh,,
values are obtained in the wake for M =0.5 as well. This may
be caused by the jets’ interference with the characteristic wake
pattern of alternating vortex shedding. Note that similar
reductions of heat (and mass) transfer were measured in the
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Fig.7 Angular variatons of Sh at selected spanwise distance from the
center of an injection hole; M =0.99; 8; =20 deg; 8;,; =3 deg

wake of a smooth impermeable cylinder exposed to a
mainstream with high turbulent intensity (Kestin and Wood,
1971; Lowery and Vachon, 1975), and when a splitter plate
was installed at § =180 deg (Hiwada et al., 1979).

I1 Spanwise Injection. The investigation of spanwise in-
jection focuses on the influence of small variations in 6;,; near
the cylinder front stagnation line at different blowing rates. As
in Fig. 2 all computer-drawn contour plots (Figs. S and 6) are
prepared via interpolations of the actual measurements. The
injection holes (which, in these figures, are divided into two
parts) are indicated by the shaded regions near the left and
right boundaries of the figures. Note that the injected jets are
directed toward the endwall.

Sherwood number distributions for an injection angle 8; of
20 deg, a blowing rate M of about 0.5, and injection locations
8, of 1, 3, and 5 deg are presented in Figs. 5(a), 5(b), and
5(c¢), respectively. Note that based on their inner diameter,
the maximum angular range of the holes is about 10 deg
(8,n; = 5 deg); thus, at 6,; = 5 deg, the injection holes are entire-
ly on one side of the cylinder stagnation line. A nearly sym-
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%)
~18@ -158

metric (around #=0) Sh distribution is seen in Fig. 5(a)
(8n; = 1); as 6,,; increases to 3 deg [Fig. 5()] and to 5 deg [Fig
5(e)], the injection effects become skewed. Although the jets
are injected with a relatively large spanwise velocity compo-
nent (8; =20 deg) and a zero streamwise component (c; =90
deg), they appear to be turned downstream by the main flow
immediately upon their entry when 8;; =3 or 5 deg [Figs. 5(b)
and 5(c)]. Consequently the mass transfer pattern approaches
somewhat that observed with streamwise injection (Fig. 2).
Mick and Mayle (1988) observed a similar pattern while
employing two rows of injection holes at 8,=30 deg and
iy =15 and 44 deg. In Figs. 5(a, b, ¢) low transfer coeffi-
cients are seen along the cylinder span at 8~ 80 deg, and local
Sh peaks are detected at 8= 100 to 110 deg.

Sherwood number distributions for 3;=20 deg, M=2.0,
and 0;,,=0 and 5 deg are presented in Figs. 6(a) and 6(b),
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respectively. A symmettric Sh distribution is seen over both
sides of the cylinder stagnation line for ;,; =0 deg [Fig. 6 (a)],
but the Sh distribution is quite skewed at 0,,; =5 deg [Fig.
6(b)]. However, at M=2.0 and 0;,; =5 deg [Fig. 6(b)] the jet
trajectories retain a larger downward spanwise component
after entering the main flow than do their counterparts at
M=0.5 [Fig. 5(c)]. The skewed distribution obtained at all
blowing rates when 9,; = 5 deg probably result from the entire
hole cross section being located on one side of the cylinder
front stagnation line. Thus, the other side of this line is unaf-
fected by injection at M=0.5 and 1.0, and only modest in-
creases over a small region are seen at M=2.0. For M=~2.0
(Fig. 6), relatively low Sh values are detected at 6=90-100
deg, and local highs are seen at §=100-115 deg. Especially
large Sh variations occur at 80 deg << 120 deg when 8,,;=5
deg is employed [Fig. 6(b)].

Figure 7 shows angular variations of Sh at selected spanwise
distances from the center of an injection hole located far from
the endwall for M= 1.0, 8, =20 deg, and 6,,; =3 deg. The rela-
tion between the distance from the hole’s center (¥’) and the
injection hole is shown in the inset at the top of the figure.
These data show that as the downward distance from the
hole’s center increases, the injection effect increases on both
sides of the hole. Maximum Sh values of about 2.5 times that
without injection are observed adjacent to the holes and just
below them. .

Spanwise average Sherwood number (Shg,) values are
presented in Fig. 8. The circumferential Sh distribution ob-
tained far from the endwall on a cylinder with no injection
holes is also shown in these figures. The spanwise-averaged
coefficients show some of the trends seen in Figs. 5-7 (local Sh
distributions). The Sh peaks near the injection holes increase
with the blowing rate and are 2-3 times the Sh value without
injection. For a given blowing rate, Shg, on the side of the
cylinder’s stagnation line opposite to injection (in the angular
range — 130 deg <8< 0 deg) drops sharply as 6;,; increases (ap-
proaching the distribution on a cylinder without injection),
whereas Sh, values on the injection side (at 6;,; <0< 130 deg)
are nearly unaffected by changes in the injection location. The
last observation is surprising, considering the great influence
of small §;; variations on local Sh distribution (Figs. 5 and 6)
and the fact that the bulk mass flow over the injection side in-
creases as 0, increases while the bulk flow over the other side
decreases. For §;,; =5-7 deg, the Shy, values on the side op-
posite to injection closely follow the impermeable wall
distribution in the angular range — 90 deg <0< 0 deg (Fig. 8).
The average coefficients on the injection side (or both sides for
0 deg < 0;,; <3 deg) peak immediately downstream of injection
and fall sharply as 6 increases. A minimum Shy, is reached be-
tween @ =80 deg and 6= 100 deg, depending on blowing rate.
A second peak is observed at 6=100-120 deg, and farther
downstream, Shy, decreases, approaching values comparable
to those obtained without injection. Similar to average coeffi-
cients for streamwise injection (Fig. 4), the Shy, distribution at
90 deg <0< 180 deg for spanwise injection (Fig. 8) resembles a
circumferential distribution over the rear portion of an im-
permeable cylinder at critical and supercritical Re; (Schmidt et
al., 1941; Giedt, 1949; Achenbach, 1975; Sogin et al., 1961).
For all injection locations, at M=2.0, Sh,, values in the
downstream portion of the wake (8= 180=+50 deg) are lower
than the Sh measurements without injection [Fig. 8 (c)]. This
is also true at lower blowing ratios when 6,,; =3 deg [Figs.
8(a) and 8 (b)]. Local Sh data in Fig. 7 show the same trend in
the wake as that mentioned above; it may result from the fact
that the injected jets interfere with the symmetric vortex shed-
ding pattern, which is characteristic of a cylinder in crossflow.

IIT Comparison of Results. Figure 9 presents spanwise-
averaged Sherwood number (Shsp) distributions for stream-
wise and spanwise injection at M~ 1.0 and 0;,; = 10 and 7 deg,
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Fig. 10 (a) Comparison of local mass transfer downstream of a span-
wise injection hole with extrapolated data from Bonnice et al. (1983);
y’D =0.0; 6;,; = 5-7 deg; (b) comparison of Shg, for spanwise injection
with extrapolated data from Bonnice et al. (1983); 6;; =5-7 deg

respectively. The Shy, distributions obtained with the two in-
jection geometries are similar despite the fact that at a given
blowing rate, the total injected mass flow for streamwise injec-
tion (s/D=3; 13 holes) is nearly twice that of spanwise injec-
tion (s/D=6; 7 holes).

Heat transfer measurements over a film-cooled circular
cylinder were conducted by Bonnice and L’Ecuyer (1983). A
comparison between their data and present results for span-
wise injection at similar geometry is given in Figs. 10(a) and
10(b). Figure 10(a) shows local h/h, values directly
downstream of an injection hole (y’/D=0). Figure 10(b)
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Table 2 Spanwise injection geometry for data shown in Fig. 12

Cylinder  Injection
diameter, tube
diameter,
mm mm s/D  s/D  B;,deg By, deg o*
Present 63.5 5.95 10.67 6 20 5,7 0
Bonnice and 150 4.76 31.5 5 25 S 1.03
L’Ecuyer ‘ 1.29
(1983)

shows spanwise-averaged h/h, values. Table 2 details the
geometry used in both studies to obtain the data shown in
these figures.

The linear extrapolation approach, commonly used to ap-
proximate h; (=hy) values from A’ measurements at 6*
larger than zero (Choe et al., 1974; Metzger et al., 1971; Miller
et al., 1984; Ligrani et al., 1985), is used to obtain 4//h’ from
the data of Bonnice and L’Ecuyer (1983). Note that only the
two (relatively close) 8* values of 1.03 and 1.29 were used by
Bonnice and L’Ecuyer (1983). Thus, the extrapolated h,/h’
values may be inaccurate. (Any error in the measurements or
the calculations is magnified by a factor of about 4.0 when &’
values at 0* = 1.03 and 1.29 are extrapolated to give A;.)

As shown in Table 2, the main difference between the
present injection geometry and that of Bonnice and L’Ecuyer
(1983) is the ratio of cylinder to injection hole diameter, d/D.
Thus, for a given x’/D, their data points are, in fact, at a
much smaller angular distance 6;,; than present data. This may
account for the somewhat different #/k, patterns obtained in
the two studies at y’ /D =0.0 [Fig. 10(a)]. The fact that larger
injection holes are used in the present study implies that, at a
given blowing rate, the total injected mass flow in present tests
is higher than that of Bonnice and L’Ecuyer (1983). Thus,
their average values A/h, at M =2.0 agree better with present
data at M=1.0 than at M=2.0 [Fig. 10(b)].

Conclusions

Several surface injection parameters affecting mass transfer
from a circular cylinder (or a turbine vane leading edge) have
been investigated. The following conclusions may be drawn
from the results obtained with spanwise and streamwise injec-
tion holes at angular locations of 0 to 7 deg and 10 to 30 deg
from stagnation, respectively, and at blowing rates of 0.5 to
2.0.

(a) The injected jets produce large Sh values and steep
local gradients downstream of the streamwise injection holes
while a relatively small increase in Sh is detected between the
holes. A somewhat similar periodic pattern, corresponding to
individual jet trajectories, is also observed for spanwise injec-
tion when the holes are located entirely on one side of the
cylinder stagnation line (i.e., 6;,;;=5 deg). For such
geometries, the injection effects on the opposite side of the
stagnation line are relatively very small.

(b) For streamwise injection, the size of the region directly
downstream of each hole, where high Sh values are found, in-
creases with M and decreases as the injection is shifted
downstream (i.e., as 8,,; increases).

(¢) The local mass transfer distribution for spanwise injec-
tion near the stagnation line is extremely sensitive to small
variations in 6;,;. Nearly symmetric Sh distributions are ob-
tained for 6;,; =0~1 deg, but for 6,,; of 3 deg or higher, the in-
jection effects become very skewed. Despite that, the
spanwise-averaged coefficients over the side of the stagnation
line where injection is employed vary little with 6. Shg,
does, however, approach values measured over a cylinder
without injection on the other side of the symmetry line as 0,
increases. )

(d) For both streamwise and spanwise injections, Sh values
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generally decrease with downstream distance from injection,
reaching a minimum at § = 80-100 deg. Farther downstream,
local peaks are observed at §=100-120 deg. This trend could
result from a boundary layer transition to turbulence, which
may occur over portions of the cylinder span at § = 80-90 deg.

(e) Mass transfer values lower than those obtained with a
uniform cylinder are observed in the downstream portion of
the wake (0 = 180 = 50 deg) for 50 deg) for streamwise injection
at M=1.0 and 2.0. A similar pattern is seen with spanwise in-
jection at M=2.0 and, if 0, is between 3 and 7 deg, at
M=1.0, also. This trend is probably due to the injected jets in-
terfering with the characteristic wake pattern of alternate
vortex shedding.

(f) Downstream of injection, the spanwise-averaged Sher-
wood number generally increases with blowing rate.
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Effects of an Embedded Vortex on
Injectant From a Single
Film-Cooling Hole in a Turbulent

P. M. Ligrani B d L
Associate Professor. 0 u n a rv aver
W. Williams Effects of embedded longitudinal vortices on heat transfer in turbulent boundary

layers with injection from a single film-cooling hole are described. These resulls
were obtained at a free-stream velocity of 10 m/s, with a film-cooling hole inclined
30 deg to the horizontal and a blowing ratio of about 0.50. The ratio of vortex core
diameter to injection hole diameter was 1.58, and the ratio of circulation to injection
velocity time hole diameter was about 3.16. Coolant distributions and spatially
resolved heat transfer measurements indicate that injection hole centerlines must be
at least 2.9-3.4 vortex core diameters away from the vortex center in the lateral
direction to avoid significant alterations to wall heat transfer and distributions of
film coolant. Under these circumstances, protection from film cooling is evident at
least up to 55 hole diameters downstream of injection. When the injection hole is
closer to the vortex center, secondary flows convect most injectant into the vortex
upwash and thermal protection from film cooling is destroyed for streamwise loca-
tions from the injection hole greater than 17.5 hole diameters.

Graduate Student.

Department of Mechanical Engineering,
Naval Postgraduate School,
Monterey, CA 93943-5000

Introduction

Film cooling is used as a means to protect surfaces from the
thermal loading that results from exposure to hot gases.
However, distributions of coolant and the resulting thermal
protection are often disturbed by secondary flows. This is
especially true for turbine passages. Here embedded vortices,
in particular, cause perturbations that often lead to local hot
spots at locations where film cooling would ordinarily be ex-
pected to provide adequate protection, and where protection is
most needed. Such vortices originate from the centrifugal in-
stability resulting from concave curvature, as well as from
local pressure gradients, which exist at locations such as the in-
tersection between the blade and endwall.

Studies of the interactions between embedded vortices and
wall injection for gas turbine application are relatively scarce.
One of the earliest is reported by Blair (1974), who measured
heat transfer on an endwall film cooled using a slot inclined at
a 30-deg angle. The large vortex located in the corner between
the endwall and the suction surface of their cascade was be-
lieved to cause significant variations of measured heat transfer
and film cooling effectiveness. Experimental studies on the in-
fluence of the endwall on film cooling from blades using one
and two rows of injection holes were performed by Goldstein
and Chen (1985, 1987). These investigators found a triangular
region on the convex side of the blade where coolant is swept
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